Democratic multi-robot exploration: New method to compute Particle Swarm Optimizations' global best parameter

O. Moslah, Yassine Hachaichi, Younes Lahbib, Raed Kouki, A. Mami
{"title":"Democratic multi-robot exploration: New method to compute Particle Swarm Optimizations' global best parameter","authors":"O. Moslah, Yassine Hachaichi, Younes Lahbib, Raed Kouki, A. Mami","doi":"10.1109/WSCNIS.2015.7368299","DOIUrl":null,"url":null,"abstract":"In multi-robot exploration operation, each robot has to continuously decide which place to move next, after exploring their current location. In this paper we use the extended version of Particle Swarm Optimization (PSO) to robotic application, which is referred to as Robotic Particle Swarm Optimization (RPSO), a technique to compute robots' new location. To better adapt this technique to the collective exploration problem, and maximize the exploring area, we used a new method for computing PSOs' global best parameter. Experiment results obtained in a simulated environment show that our new method of computing PSOs' global best parameter increase the explored area.","PeriodicalId":253256,"journal":{"name":"2015 World Symposium on Computer Networks and Information Security (WSCNIS)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 World Symposium on Computer Networks and Information Security (WSCNIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSCNIS.2015.7368299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In multi-robot exploration operation, each robot has to continuously decide which place to move next, after exploring their current location. In this paper we use the extended version of Particle Swarm Optimization (PSO) to robotic application, which is referred to as Robotic Particle Swarm Optimization (RPSO), a technique to compute robots' new location. To better adapt this technique to the collective exploration problem, and maximize the exploring area, we used a new method for computing PSOs' global best parameter. Experiment results obtained in a simulated environment show that our new method of computing PSOs' global best parameter increase the explored area.
民主多机器人探索:计算粒子群优化全局最优参数的新方法
在多机器人探索作业中,每个机器人在探索了自己当前的位置后,必须不断地决定下一步要移动的地方。本文将粒子群算法(Particle Swarm Optimization, PSO)扩展到机器人中,称为机器人粒子群算法(robotic Particle Swarm Optimization, RPSO),一种计算机器人新位置的方法。为了使该方法更好地适用于集体勘探问题,并使勘探面积最大化,我们使用了一种新的方法来计算pso的全局最优参数。在模拟环境下的实验结果表明,本文提出的计算pso全局最优参数的新方法增加了探测面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信