Learning how to plan and instantiate a plan in multi-agent coalition

Xin Li, Leen-Kiat Soh
{"title":"Learning how to plan and instantiate a plan in multi-agent coalition","authors":"Xin Li, Leen-Kiat Soh","doi":"10.1109/IAT.2004.1343000","DOIUrl":null,"url":null,"abstract":"We propose an innovative two-step learning approach to planning-instantiation for multi-agent coalition formation in dynamic, uncertain, real-time, and noisy environments. The first step learns about the planning of a coalition to improve its quality, adapting to the real-time and environmental requirements. The second step learns about the instantiation of the plan to improve the formation process, taking into account uncertain and dynamic behaviors of the peer agents. Decomposing the approach into two steps allows for modularity and flexibility in learning: learning how to plan a coalition is strategic while learning how to instantiate a plan is tactical. Our approach employs a case-based reinforcement learning (CBRL) framework.","PeriodicalId":281008,"journal":{"name":"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAT.2004.1343000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose an innovative two-step learning approach to planning-instantiation for multi-agent coalition formation in dynamic, uncertain, real-time, and noisy environments. The first step learns about the planning of a coalition to improve its quality, adapting to the real-time and environmental requirements. The second step learns about the instantiation of the plan to improve the formation process, taking into account uncertain and dynamic behaviors of the peer agents. Decomposing the approach into two steps allows for modularity and flexibility in learning: learning how to plan a coalition is strategic while learning how to instantiate a plan is tactical. Our approach employs a case-based reinforcement learning (CBRL) framework.
学习如何在多智能体联盟中规划和实例化计划
我们提出了一种创新的两步学习方法,用于动态、不确定、实时和噪声环境下多智能体联盟形成的规划实例化。第一步是了解联盟的规划,以提高其质量,适应实时和环境要求。第二步学习计划的实例化以改进形成过程,考虑到同伴代理的不确定性和动态行为。将该方法分解为两个步骤,可以实现学习的模块化和灵活性:学习如何规划联盟是战略性的,而学习如何实例化计划是战术性的。我们的方法采用基于案例的强化学习(CBRL)框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信