A porosity result regarding fixed points for a class of nonexpansive mappings

A. Zaslavski
{"title":"A porosity result regarding fixed points for a class of nonexpansive mappings","authors":"A. Zaslavski","doi":"10.23952/asvao.4.2022.3.10","DOIUrl":null,"url":null,"abstract":". In one of our recent papers, we considered a complete metric space of nonexpansive mappings taking a bounded and closed subset of a complete hyperbolic space into the space so that the boundary of this subset is mapped back into the subset itself. Using the Baire category approach, we proved that most of these mappings possess a unique fixed point which attracts all their iterates. In the present paper, we improve upon this result by showing that the complement of the set of mappings which have a fixed point is not only of the first Baire category, but also is σ -porous.","PeriodicalId":362333,"journal":{"name":"Applied Set-Valued Analysis and Optimization","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Set-Valued Analysis and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23952/asvao.4.2022.3.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. In one of our recent papers, we considered a complete metric space of nonexpansive mappings taking a bounded and closed subset of a complete hyperbolic space into the space so that the boundary of this subset is mapped back into the subset itself. Using the Baire category approach, we proved that most of these mappings possess a unique fixed point which attracts all their iterates. In the present paper, we improve upon this result by showing that the complement of the set of mappings which have a fixed point is not only of the first Baire category, but also is σ -porous.
关于一类非膨胀映射不动点的孔隙度结果
。在我们最近的一篇论文中,我们考虑了一个非扩张映射的完备度量空间,将一个完备双曲空间的有界闭子集映射到空间中,使得这个子集的边界被映射回子集本身。利用贝尔范畴的方法,我们证明了大多数映射都有一个唯一的不动点来吸引所有的迭代。在本文中,我们改进了这一结果,证明了具有不动点的映射集的补不仅属于第一Baire范畴,而且是σ -多孔的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信