A Mobile Localization Method for Wireless Sensor Network in Mixed LOS/NLOS Environments

Yan Wang, Jinquan Hang, Chen Li, Jia You, Shujia Chen, Long Cheng
{"title":"A Mobile Localization Method for Wireless Sensor Network in Mixed LOS/NLOS Environments","authors":"Yan Wang, Jinquan Hang, Chen Li, Jia You, Shujia Chen, Long Cheng","doi":"10.1109/ICEIEC.2018.8473467","DOIUrl":null,"url":null,"abstract":"In Wireless Sensor Networks (WSNs), Non-Line-of-Sight (NLOS) propagation becomes the main challenge of mobile nodes localization. In order to solve this problem, this paper presents a Square Root Unscented Kalman Filtering-Convex Optimization (SRUKF-CO) method. The Square Root Unscented Kalman Filter (SRUKF) is first used to correct the measuring distance of the LOS and NLOS mobile nodes without prior information on the statistical properties of the NLOS error, which is independent of the physical measuring method. Then, the maximum likelihood localization method is used to estimate the position coordinates. Finally, the limit conditions are determined, and the convex optimization method is adopted to further reduce the NLOS errors. The simulation results show that this method has higher accuracy of positioning compared with unfiltered direct positioning (NF), Kalman Filter (KF) and Particle Filter (PF) under mixed LOS / NLOS environment, and it is robust to NLOS errors.","PeriodicalId":344233,"journal":{"name":"2018 8th International Conference on Electronics Information and Emergency Communication (ICEIEC)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 8th International Conference on Electronics Information and Emergency Communication (ICEIEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIEC.2018.8473467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In Wireless Sensor Networks (WSNs), Non-Line-of-Sight (NLOS) propagation becomes the main challenge of mobile nodes localization. In order to solve this problem, this paper presents a Square Root Unscented Kalman Filtering-Convex Optimization (SRUKF-CO) method. The Square Root Unscented Kalman Filter (SRUKF) is first used to correct the measuring distance of the LOS and NLOS mobile nodes without prior information on the statistical properties of the NLOS error, which is independent of the physical measuring method. Then, the maximum likelihood localization method is used to estimate the position coordinates. Finally, the limit conditions are determined, and the convex optimization method is adopted to further reduce the NLOS errors. The simulation results show that this method has higher accuracy of positioning compared with unfiltered direct positioning (NF), Kalman Filter (KF) and Particle Filter (PF) under mixed LOS / NLOS environment, and it is robust to NLOS errors.
一种混合LOS/NLOS环境下无线传感器网络的移动定位方法
在无线传感器网络(WSNs)中,非视距(NLOS)传播成为移动节点定位的主要挑战。为了解决这个问题,本文提出了一种平方根无气味卡尔曼滤波-凸优化(SRUKF-CO)方法。首先利用平方根无嗅卡尔曼滤波(SRUKF)在不依赖于物理测量方法的NLOS误差统计特性先验信息的情况下,对LOS和NLOS移动节点的测量距离进行校正。然后,采用最大似然定位方法估计位置坐标。最后确定极限条件,采用凸优化方法进一步减小NLOS误差。仿真结果表明,与未滤波的直接定位(NF)、卡尔曼滤波(KF)和粒子滤波(PF)相比,该方法在LOS / NLOS混合环境下具有更高的定位精度,并且对NLOS误差具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信