Improving Chinese Grammatical Error Correction with Corpus Augmentation and Hierarchical Phrase-based Statistical Machine Translation

Yinchen Zhao, Mamoru Komachi, H. Ishikawa
{"title":"Improving Chinese Grammatical Error Correction with Corpus Augmentation and Hierarchical Phrase-based Statistical Machine Translation","authors":"Yinchen Zhao, Mamoru Komachi, H. Ishikawa","doi":"10.18653/v1/W15-4417","DOIUrl":null,"url":null,"abstract":"In this study, we describe our system submitted to the 2nd Workshop on Natural Language Processing Techniques for Educational Applications (NLP-TEA-2) shared task on Chinese grammatical error diagnosis (CGED). We use a statistical machine translation method already applied to several similar tasks (Brockett et al., 2006; Chiu et al., 2013; Zhao et al., 2014). In this research, we examine corpus-augmentation and explore alternative translation models including syntaxbased and hierarchical phrase-based models. Finally, we show variations using different combinations of these factors.","PeriodicalId":316430,"journal":{"name":"NLP-TEA@ACL/IJCNLP","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NLP-TEA@ACL/IJCNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W15-4417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this study, we describe our system submitted to the 2nd Workshop on Natural Language Processing Techniques for Educational Applications (NLP-TEA-2) shared task on Chinese grammatical error diagnosis (CGED). We use a statistical machine translation method already applied to several similar tasks (Brockett et al., 2006; Chiu et al., 2013; Zhao et al., 2014). In this research, we examine corpus-augmentation and explore alternative translation models including syntaxbased and hierarchical phrase-based models. Finally, we show variations using different combinations of these factors.
基于语料库增强和分层短语的统计机器翻译改进汉语语法纠错
在这项研究中,我们描述了我们的系统提交给第二届教育应用自然语言处理技术研讨会(NLP-TEA-2)关于汉语语法错误诊断(CGED)的共享任务。我们使用了已经应用于几个类似任务的统计机器翻译方法(Brockett et al., 2006;邱等人,2013;赵等人,2014)。在本研究中,我们研究了语料库增强,并探索了其他翻译模型,包括基于句法和基于分层短语的模型。最后,我们展示了使用这些因素的不同组合的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信