{"title":"Moving target detection using distributed MIMO radar in non-homogeneous clutter: A subspace approach","authors":"Pu Wang, Hongbin Li, B. Himed","doi":"10.1109/WDD.2012.7311298","DOIUrl":null,"url":null,"abstract":"Motivated by the fact that the multi-static transmit-receive configuration in a distributed multiple-input multiple-output (MIMO) radar causes non-stationary clutter, we consider the problem of moving target detection (MTD) using a distributed MIMO radar in non-homogeneous clutter environments. A new non-homogeneous clutter model, where the clutter resides in a low-rank subspace with different subspace coefficients for different transmit-receive pairs, is introduced. The subspace clutter model is effective in capturing the non-homogeneity of the clutter and, in particular, the power variations across different aspect angles and resolution cells. A generalized likelihood ratio test (GLRT), which performs local matched subspace detection, noncoherent combining using local decision variables of all transmit-receive pairs and target velocity matching, is proposed. The GLRT is shown to be a constant false alarm rate (CFAR) detector. Computer simulations are provided to verify our statistical analysis of the GLRT, and a comparison with existing detectors is conducted to evaluate the impact of model mismatch on detection performance.","PeriodicalId":102625,"journal":{"name":"2012 International Waveform Diversity & Design Conference (WDD)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Waveform Diversity & Design Conference (WDD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WDD.2012.7311298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by the fact that the multi-static transmit-receive configuration in a distributed multiple-input multiple-output (MIMO) radar causes non-stationary clutter, we consider the problem of moving target detection (MTD) using a distributed MIMO radar in non-homogeneous clutter environments. A new non-homogeneous clutter model, where the clutter resides in a low-rank subspace with different subspace coefficients for different transmit-receive pairs, is introduced. The subspace clutter model is effective in capturing the non-homogeneity of the clutter and, in particular, the power variations across different aspect angles and resolution cells. A generalized likelihood ratio test (GLRT), which performs local matched subspace detection, noncoherent combining using local decision variables of all transmit-receive pairs and target velocity matching, is proposed. The GLRT is shown to be a constant false alarm rate (CFAR) detector. Computer simulations are provided to verify our statistical analysis of the GLRT, and a comparison with existing detectors is conducted to evaluate the impact of model mismatch on detection performance.