Parallel graph decompositions using random shifts

G. Miller, Richard Peng, S. Xu
{"title":"Parallel graph decompositions using random shifts","authors":"G. Miller, Richard Peng, S. Xu","doi":"10.1145/2486159.2486180","DOIUrl":null,"url":null,"abstract":"We show an improved parallel algorithm for decomposing an undirected unweighted graph into small diameter pieces with a small fraction of the edges in between. These decompositions form critical subroutines in a number of graph algorithms. Our algorithm builds upon the shifted shortest path approach introduced in [Blelloch, Gupta, Koutis, Miller, Peng, Tangwongsan, SPAA 2011]. By combining various stages of the previous algorithm, we obtain a significantly simpler algorithm with the same asymptotic guarantees as the best sequential algorithm.","PeriodicalId":353007,"journal":{"name":"Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"112","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2486159.2486180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 112

Abstract

We show an improved parallel algorithm for decomposing an undirected unweighted graph into small diameter pieces with a small fraction of the edges in between. These decompositions form critical subroutines in a number of graph algorithms. Our algorithm builds upon the shifted shortest path approach introduced in [Blelloch, Gupta, Koutis, Miller, Peng, Tangwongsan, SPAA 2011]. By combining various stages of the previous algorithm, we obtain a significantly simpler algorithm with the same asymptotic guarantees as the best sequential algorithm.
使用随机移位的并行图分解
我们展示了一种改进的并行算法,用于将无向无加权图分解为具有小部分边缘的小直径块。这些分解构成了许多图算法中的关键子程序。我们的算法建立在[Blelloch, Gupta, Koutis, Miller, Peng, Tangwongsan, SPAA 2011]中引入的移位最短路径方法的基础上。通过结合前面算法的各个阶段,我们得到了一个明显更简单的算法,并具有与最佳序列算法相同的渐近保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信