{"title":"Classification Rule Mining Supported by Ontology for Discrimination Discovery","authors":"B. Luong, S. Ruggieri, F. Turini","doi":"10.1109/ICDMW.2016.0128","DOIUrl":null,"url":null,"abstract":"Discrimination discovery from data consists of designing data mining methods for the actual discovery of discriminatory situations and practices hidden in a large amount of historical decision records. Approaches based on classification rule mining consider items at a flat concept level, with no exploitation of background knowledge on the hierarchical and inter-relational structure of domains. On the other hand, ontologies are a widespread and ever increasing means for expressing such a knowledge. In this paper, we propose a framework for discrimination discovery from ontologies, where contexts of prima-facie evidence of discrimination are summarized in the form of generalized classification rules at different levels of abstraction. Throughout the paper, we adopt a motivating and intriguing case study based on discriminatory tariffs applied by the U. S. Harmonized Tariff Schedules on imported goods.","PeriodicalId":373866,"journal":{"name":"2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2016.0128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Discrimination discovery from data consists of designing data mining methods for the actual discovery of discriminatory situations and practices hidden in a large amount of historical decision records. Approaches based on classification rule mining consider items at a flat concept level, with no exploitation of background knowledge on the hierarchical and inter-relational structure of domains. On the other hand, ontologies are a widespread and ever increasing means for expressing such a knowledge. In this paper, we propose a framework for discrimination discovery from ontologies, where contexts of prima-facie evidence of discrimination are summarized in the form of generalized classification rules at different levels of abstraction. Throughout the paper, we adopt a motivating and intriguing case study based on discriminatory tariffs applied by the U. S. Harmonized Tariff Schedules on imported goods.