Making content caching policies 'smart' using the deepcache framework

A. Narayanan, Saurabh Verma, Eman Ramadan, Pariya Babaie, Zhi-Li Zhang
{"title":"Making content caching policies 'smart' using the deepcache framework","authors":"A. Narayanan, Saurabh Verma, Eman Ramadan, Pariya Babaie, Zhi-Li Zhang","doi":"10.1145/3310165.3310174","DOIUrl":null,"url":null,"abstract":"In this paper, we present Deepcache a novel Framework for content caching, which can significantly boost cache performance. Our Framework is based on powerful deep recurrent neural network models. It comprises of two main components: i) Object Characteristics Predictor, which builds upon deep LSTM Encoder-Decoder model to predict the future characteristics of an object (such as object popularity) - to the best of our knowledge, we are the first to propose LSTM Encoder-Decoder model for content caching; ii) a caching policy component, which accounts for predicted information of objects to make smart caching decisions. In our thorough experiments, we show that applying Deepcache Framework to existing cache policies, such as LRU and k-LRU, significantly boosts the number of cache hits.","PeriodicalId":403234,"journal":{"name":"Comput. Commun. Rev.","volume":"86 21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Commun. Rev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310165.3310174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this paper, we present Deepcache a novel Framework for content caching, which can significantly boost cache performance. Our Framework is based on powerful deep recurrent neural network models. It comprises of two main components: i) Object Characteristics Predictor, which builds upon deep LSTM Encoder-Decoder model to predict the future characteristics of an object (such as object popularity) - to the best of our knowledge, we are the first to propose LSTM Encoder-Decoder model for content caching; ii) a caching policy component, which accounts for predicted information of objects to make smart caching decisions. In our thorough experiments, we show that applying Deepcache Framework to existing cache policies, such as LRU and k-LRU, significantly boosts the number of cache hits.
使用deepcache框架使内容缓存策略“智能”
在本文中,我们提出了一种新的内容缓存框架Deepcache,它可以显著提高缓存性能。我们的框架是基于强大的深度递归神经网络模型。它由两个主要组件组成:i)对象特征预测器,它建立在深度LSTM编码器-解码器模型上,以预测对象的未来特征(如对象受欢迎程度)——据我们所知,我们是第一个提出LSTM编码器-解码器模型用于内容缓存的;Ii)缓存策略组件,它考虑对象的预测信息,以做出明智的缓存决策。在我们彻底的实验中,我们表明将Deepcache框架应用于现有的缓存策略,如LRU和k-LRU,可以显著提高缓存命中次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信