Machine Learning Methods for Predicting the Popularity of Movies

D. Oyewola, E. Dada
{"title":"Machine Learning Methods for Predicting the Popularity of Movies","authors":"D. Oyewola, E. Dada","doi":"10.33969/ais.2022040105","DOIUrl":null,"url":null,"abstract":"The movie industry has grown into a several billion-dollar enterprise, and there is now a ton of information online about it. Numerous machine learning techniques have been created by academics and can produce effective classification models. In this study, different machine learning classification techniques are applied to our own movie dataset for multiclass classification. This paper's main objective is to compare the effectiveness of various machine learning techniques. This study examined five methods: Multinomial Logistic Regression (MLR), Support Vector Machine (SVM), Bagging (BAG), Naive Bayes (NBS) and K-Nearest Neighbor (KNN), while noise was removed using All K-Edited Nearest Neighbors (AENN). These techniques all utilize previous IMDb dataset to predict a movie's net profit value. The algorithms predict the profit at the box office for each of these five techniques. Based on the dataset used in this paper, which consists of 5043 rows and 14 columns of movies, this study evaluates the performance of all seven machine learning techniques. Bagging outperformed other machine learning techniques with a 99.56% accuracy rate.","PeriodicalId":273028,"journal":{"name":"Journal of Artificial Intelligence and Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33969/ais.2022040105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The movie industry has grown into a several billion-dollar enterprise, and there is now a ton of information online about it. Numerous machine learning techniques have been created by academics and can produce effective classification models. In this study, different machine learning classification techniques are applied to our own movie dataset for multiclass classification. This paper's main objective is to compare the effectiveness of various machine learning techniques. This study examined five methods: Multinomial Logistic Regression (MLR), Support Vector Machine (SVM), Bagging (BAG), Naive Bayes (NBS) and K-Nearest Neighbor (KNN), while noise was removed using All K-Edited Nearest Neighbors (AENN). These techniques all utilize previous IMDb dataset to predict a movie's net profit value. The algorithms predict the profit at the box office for each of these five techniques. Based on the dataset used in this paper, which consists of 5043 rows and 14 columns of movies, this study evaluates the performance of all seven machine learning techniques. Bagging outperformed other machine learning techniques with a 99.56% accuracy rate.
预测电影流行度的机器学习方法
电影产业已经发展成为一个价值数十亿美元的企业,现在网上有大量关于它的信息。学术界已经创建了许多机器学习技术,可以产生有效的分类模型。在本研究中,不同的机器学习分类技术应用于我们自己的电影数据集进行多类分类。本文的主要目的是比较各种机器学习技术的有效性。本研究考察了五种方法:多项逻辑回归(MLR)、支持向量机(SVM)、Bagging (BAG)、朴素贝叶斯(NBS)和k近邻(KNN),并使用All K-Edited Nearest Neighbors (AENN)去除噪声。这些技术都利用以前的IMDb数据集来预测电影的净利润值。该算法预测了这五种技术中每一种的票房利润。基于本文使用的由5043行和14列电影组成的数据集,本研究评估了所有七种机器学习技术的性能。装袋优于其他机器学习技术,准确率为99.56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信