{"title":"Comparative Analysis of Different CNN Models for Building Segmentation from Satellite and UAV Images","authors":"Batuhan Sariturk, Damla Kumbasar, D. Seker","doi":"10.14358/pers.22-00084r2","DOIUrl":null,"url":null,"abstract":"Building segmentation has numerous application areas such as urban planning and disaster management. In this study, 12 CNN models (U-Net, FPN, and LinkNet using EfficientNet-B5 backbone, U-Net, SegNet, FCN, and six Residual U-Net models) were generated and used for building segmentation.\n Inria Aerial Image Labeling Data Set was used to train models, and three data sets (Inria Aerial Image Labeling Data Set, Massachusetts Buildings Data Set, and Syedra Archaeological Site Data Set) were used to evaluate trained models. On the Inria test set, Residual-2 U-Net has the highest\n F1 and Intersection over Union (IoU) scores with 0.824 and 0.722, respectively. On the Syedra test set, LinkNet-EfficientNet-B5 has F1 and IoU scores of 0.336 and 0.246. On the Massachusetts test set, Residual-4 U-Net has F1 and IoU scores of 0.394 and 0.259. It has been observed that, for\n all sets, at least two of the top three models used residual connections. Therefore, for this study, residual connections are more successful than conventional convolutional layers.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.22-00084r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Building segmentation has numerous application areas such as urban planning and disaster management. In this study, 12 CNN models (U-Net, FPN, and LinkNet using EfficientNet-B5 backbone, U-Net, SegNet, FCN, and six Residual U-Net models) were generated and used for building segmentation.
Inria Aerial Image Labeling Data Set was used to train models, and three data sets (Inria Aerial Image Labeling Data Set, Massachusetts Buildings Data Set, and Syedra Archaeological Site Data Set) were used to evaluate trained models. On the Inria test set, Residual-2 U-Net has the highest
F1 and Intersection over Union (IoU) scores with 0.824 and 0.722, respectively. On the Syedra test set, LinkNet-EfficientNet-B5 has F1 and IoU scores of 0.336 and 0.246. On the Massachusetts test set, Residual-4 U-Net has F1 and IoU scores of 0.394 and 0.259. It has been observed that, for
all sets, at least two of the top three models used residual connections. Therefore, for this study, residual connections are more successful than conventional convolutional layers.