Comparative Analysis of Different CNN Models for Building Segmentation from Satellite and UAV Images

Batuhan Sariturk, Damla Kumbasar, D. Seker
{"title":"Comparative Analysis of Different CNN Models for Building Segmentation from Satellite and UAV Images","authors":"Batuhan Sariturk, Damla Kumbasar, D. Seker","doi":"10.14358/pers.22-00084r2","DOIUrl":null,"url":null,"abstract":"Building segmentation has numerous application areas such as urban planning and disaster management. In this study, 12 CNN models (U-Net, FPN, and LinkNet using EfficientNet-B5 backbone, U-Net, SegNet, FCN, and six Residual U-Net models) were generated and used for building segmentation.\n Inria Aerial Image Labeling Data Set was used to train models, and three data sets (Inria Aerial Image Labeling Data Set, Massachusetts Buildings Data Set, and Syedra Archaeological Site Data Set) were used to evaluate trained models. On the Inria test set, Residual-2 U-Net has the highest\n F1 and Intersection over Union (IoU) scores with 0.824 and 0.722, respectively. On the Syedra test set, LinkNet-EfficientNet-B5 has F1 and IoU scores of 0.336 and 0.246. On the Massachusetts test set, Residual-4 U-Net has F1 and IoU scores of 0.394 and 0.259. It has been observed that, for\n all sets, at least two of the top three models used residual connections. Therefore, for this study, residual connections are more successful than conventional convolutional layers.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.22-00084r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Building segmentation has numerous application areas such as urban planning and disaster management. In this study, 12 CNN models (U-Net, FPN, and LinkNet using EfficientNet-B5 backbone, U-Net, SegNet, FCN, and six Residual U-Net models) were generated and used for building segmentation. Inria Aerial Image Labeling Data Set was used to train models, and three data sets (Inria Aerial Image Labeling Data Set, Massachusetts Buildings Data Set, and Syedra Archaeological Site Data Set) were used to evaluate trained models. On the Inria test set, Residual-2 U-Net has the highest F1 and Intersection over Union (IoU) scores with 0.824 and 0.722, respectively. On the Syedra test set, LinkNet-EfficientNet-B5 has F1 and IoU scores of 0.336 and 0.246. On the Massachusetts test set, Residual-4 U-Net has F1 and IoU scores of 0.394 and 0.259. It has been observed that, for all sets, at least two of the top three models used residual connections. Therefore, for this study, residual connections are more successful than conventional convolutional layers.
不同CNN模型用于卫星和无人机图像建筑物分割的比较分析
建筑分割在城市规划、灾害管理等领域有着广泛的应用。在本研究中,生成了12个CNN模型(U-Net、FPN和LinkNet,使用EfficientNet-B5骨主干、U-Net、SegNet、FCN和6个Residual U-Net模型)并用于构建分割。使用Inria航空图像标记数据集对模型进行训练,并使用三个数据集(Inria航空图像标记数据集、马萨诸塞州建筑物数据集和Syedra考古遗址数据集)对训练后的模型进行评估。在Inria测试集上,残差-2 U-Net的F1和IoU得分最高,分别为0.824和0.722。在sydra测试集上,LinkNet-EfficientNet-B5的F1和IoU得分分别为0.336和0.246。在Massachusetts测试集中,Residual-4 U-Net的F1和IoU得分分别为0.394和0.259。可以观察到,对于所有集合,前三个模型中至少有两个使用了残差连接。因此,在本研究中,残差连接比传统卷积层更成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信