AutoPager: Auto-tuning Memory-Mapped I/O Parameters in Userspace

Karim Youssef, Niteya Shah, M. Gokhale, R. Pearce, Wu-chun Feng
{"title":"AutoPager: Auto-tuning Memory-Mapped I/O Parameters in Userspace","authors":"Karim Youssef, Niteya Shah, M. Gokhale, R. Pearce, Wu-chun Feng","doi":"10.1109/HPEC55821.2022.9926409","DOIUrl":null,"url":null,"abstract":"The exponential growth in dataset sizes has shifted the bottleneck of high-performance data analytics from the compute subsystem to the memory and storage subsystems. This bottleneck has led to the proliferation of non-volatile memory (NVM). To bridge the performance gap between the Linux I/O subsystem and NVM, userspace memory-mapped I/O enables application-specific I/O optimizations. Specifically, UMap, an open-source userspace memory-mapping tool, exposes tunable paging parameters to application users, such as page size and degree of paging concurrency. Tuning these parameters is computationally intractable due to the vast search space and the cost of evaluating each parameter combination. To address this challenge, we present Autopager, a tool for auto-tuning userspace paging parameters. Our evaluation, using five data-intensive applications with UMap, shows that Autopager automatically achieves comparable performance to exhaustive tuning with 10 x less tuning overhead. and 16.3 x and 1.52 x speedup over UMap with default parameters and UMap with page-size only tuning, respectively.","PeriodicalId":200071,"journal":{"name":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"8 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC55821.2022.9926409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The exponential growth in dataset sizes has shifted the bottleneck of high-performance data analytics from the compute subsystem to the memory and storage subsystems. This bottleneck has led to the proliferation of non-volatile memory (NVM). To bridge the performance gap between the Linux I/O subsystem and NVM, userspace memory-mapped I/O enables application-specific I/O optimizations. Specifically, UMap, an open-source userspace memory-mapping tool, exposes tunable paging parameters to application users, such as page size and degree of paging concurrency. Tuning these parameters is computationally intractable due to the vast search space and the cost of evaluating each parameter combination. To address this challenge, we present Autopager, a tool for auto-tuning userspace paging parameters. Our evaluation, using five data-intensive applications with UMap, shows that Autopager automatically achieves comparable performance to exhaustive tuning with 10 x less tuning overhead. and 16.3 x and 1.52 x speedup over UMap with default parameters and UMap with page-size only tuning, respectively.
AutoPager:自动调优用户空间中的内存映射I/O参数
数据集大小的指数级增长已经将高性能数据分析的瓶颈从计算子系统转移到内存和存储子系统。这一瓶颈导致了非易失性内存(NVM)的激增。为了弥合Linux I/O子系统和NVM之间的性能差距,用户空间内存映射I/O启用了特定于应用程序的I/O优化。具体来说,UMap是一个开源的用户空间内存映射工具,它向应用程序用户公开了可调的分页参数,比如页面大小和分页并发程度。由于巨大的搜索空间和评估每个参数组合的成本,优化这些参数在计算上是难以处理的。为了解决这个问题,我们提出了Autopager,一个自动调优用户空间分页参数的工具。我们使用5个带有UMap的数据密集型应用程序进行评估,结果表明Autopager自动实现了与彻底调优相当的性能,调优开销减少了10倍。与使用默认参数的UMap和仅调整页面大小的UMap相比,分别提高了16.3倍和1.52倍的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信