{"title":"Hydrodynamic Instabilities in Inertial Confinement Fusion","authors":"N. Hoffman","doi":"10.1201/9781351073950-5","DOIUrl":null,"url":null,"abstract":"The focus of the paper is on buoyancy-driven instabilities of the Rayleigh-Taylor type, which are commonly regarded as the most important kind of hydrodynamic instability in inertial-confinement-fusion implosions. The paper is intended to be pedagogical rather than research-oriented, and so is by no means a comprehensive review of work in this field. Rather, it is hoped that the student will find here a foundation on which to build an understanding of current research, and the experienced researcher will find a compilation of useful results. The aim of the paper is to discuss the evolution of a single Rayleigh-Taylor-unstable mode, from its linear phase to its late-stage constant-velocity bubble growth, with a brief consideration of the saturation of linear growth. The influence of other modes in invoked only in the short-range sense (in wavenumber space) of the Haan saturation model. Owing to limitations of space, the treatment of other instabilities such as Richtmyer-Meshkov and Kelvin-Helmholtz is necessarily very brief, and entirely inadequate as an introductory discussion. Likewise, there is no reference to the effect of convergent geometry, to long-range mode coupling, or to shape effects in three-dimensional growth. Furthermore, there is no reference to the large body of experimental research relatedmore » to hydrodynamic instabilities.« less","PeriodicalId":171249,"journal":{"name":"Laser Plasma Interactions 5","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Plasma Interactions 5","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781351073950-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The focus of the paper is on buoyancy-driven instabilities of the Rayleigh-Taylor type, which are commonly regarded as the most important kind of hydrodynamic instability in inertial-confinement-fusion implosions. The paper is intended to be pedagogical rather than research-oriented, and so is by no means a comprehensive review of work in this field. Rather, it is hoped that the student will find here a foundation on which to build an understanding of current research, and the experienced researcher will find a compilation of useful results. The aim of the paper is to discuss the evolution of a single Rayleigh-Taylor-unstable mode, from its linear phase to its late-stage constant-velocity bubble growth, with a brief consideration of the saturation of linear growth. The influence of other modes in invoked only in the short-range sense (in wavenumber space) of the Haan saturation model. Owing to limitations of space, the treatment of other instabilities such as Richtmyer-Meshkov and Kelvin-Helmholtz is necessarily very brief, and entirely inadequate as an introductory discussion. Likewise, there is no reference to the effect of convergent geometry, to long-range mode coupling, or to shape effects in three-dimensional growth. Furthermore, there is no reference to the large body of experimental research relatedmore » to hydrodynamic instabilities.« less