Age Detection based on Facial Features Using Support Vector Machine

Jayaprada Hiremath, Shantala S. Hiremath, Sujith Kumar, Elukoti Hebbare, Shantakumar B. Patil, Mrutyunjaya S. Hiremath
{"title":"Age Detection based on Facial Features Using Support Vector Machine","authors":"Jayaprada Hiremath, Shantala S. Hiremath, Sujith Kumar, Elukoti Hebbare, Shantakumar B. Patil, Mrutyunjaya S. Hiremath","doi":"10.1109/ICKECS56523.2022.10060119","DOIUrl":null,"url":null,"abstract":"Face aging has been studied for decades. Determining age from a facial shot is key to our technique for diagnosing abnormal behavior. Security monitoring, forensics, biometrics, and Human-Computer Interface (HCI) use facial age estimates. We only look at adults 1–75 in the UTK Face database, which covers 0 to 116 years. The database contains 23,708 face photos with age, gender, and ethnicity annotations. In work, preprocessing, feature extraction, feature selection, and age categorization are involved. Preprocessing adjusts images. Computer vision uses Local Binary Pattern (LBP) and Histogram of Oriented Gradient (HOG) as visual descriptors, whereas fscmrmr is utilized for classification. Support Vector Machines (SVM) improve classification accuracy in highdimensional areas. The chosen characteristics are concatenated and passed to a multiclass SVM classifier to classify the images with 95.69% success.","PeriodicalId":171432,"journal":{"name":"2022 International Conference on Knowledge Engineering and Communication Systems (ICKES)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Knowledge Engineering and Communication Systems (ICKES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKECS56523.2022.10060119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Face aging has been studied for decades. Determining age from a facial shot is key to our technique for diagnosing abnormal behavior. Security monitoring, forensics, biometrics, and Human-Computer Interface (HCI) use facial age estimates. We only look at adults 1–75 in the UTK Face database, which covers 0 to 116 years. The database contains 23,708 face photos with age, gender, and ethnicity annotations. In work, preprocessing, feature extraction, feature selection, and age categorization are involved. Preprocessing adjusts images. Computer vision uses Local Binary Pattern (LBP) and Histogram of Oriented Gradient (HOG) as visual descriptors, whereas fscmrmr is utilized for classification. Support Vector Machines (SVM) improve classification accuracy in highdimensional areas. The chosen characteristics are concatenated and passed to a multiclass SVM classifier to classify the images with 95.69% success.
基于支持向量机的人脸特征年龄检测
人们对面部衰老已经研究了几十年。通过面部照片判断年龄是我们诊断异常行为的关键。安全监控、取证、生物识别和人机界面(HCI)使用面部年龄估计。我们只看UTK面部数据库中1-75岁的成年人,涵盖0到116岁。该数据库包含23,708张带有年龄,性别和种族注释的面部照片。在工作中涉及到预处理、特征提取、特征选择和年龄分类。预处理调整图像。计算机视觉使用局部二值模式(LBP)和定向梯度直方图(HOG)作为视觉描述符,而使用fscmrmr进行分类。支持向量机(SVM)提高了高维区域的分类精度。将选择的特征进行串联并传递给多类SVM分类器对图像进行分类,成功率为95.69%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信