A Machine Learning Based Approach for Software Test Case Selection

Victor Cheruiyot, B. Saha
{"title":"A Machine Learning Based Approach for Software Test Case Selection","authors":"Victor Cheruiyot, B. Saha","doi":"10.21467/proceedings.115.25","DOIUrl":null,"url":null,"abstract":"Testing is conducted after developing each software to detect the defects which are then removed. However, it is very difficult task to test a non-trivial software completely. Hence, it’s important to test the software with important test cases. In this research, we developed a machine learning based software test case selection strategy for regression testing. To develop the method, we first clean and preprocess the data. Then we convet the categorical data to its numerical value. The we implement a natural language processing to calculate bag of features for text feature such as testcase title. We evaluate different machine learning models for test case selection. Experimental results demonstrate that machine learning based models can aovid manual labour of the domain experts for test case selection.","PeriodicalId":413368,"journal":{"name":"Proceedings of Intelligent Computing and Technologies Conference","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Intelligent Computing and Technologies Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21467/proceedings.115.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Testing is conducted after developing each software to detect the defects which are then removed. However, it is very difficult task to test a non-trivial software completely. Hence, it’s important to test the software with important test cases. In this research, we developed a machine learning based software test case selection strategy for regression testing. To develop the method, we first clean and preprocess the data. Then we convet the categorical data to its numerical value. The we implement a natural language processing to calculate bag of features for text feature such as testcase title. We evaluate different machine learning models for test case selection. Experimental results demonstrate that machine learning based models can aovid manual labour of the domain experts for test case selection.
基于机器学习的软件测试用例选择方法
测试是在开发每个软件之后进行的,以检测缺陷,然后将其移除。然而,完全测试一个重要的软件是一项非常困难的任务。因此,用重要的测试用例测试软件是很重要的。在这项研究中,我们开发了一种基于机器学习的软件测试用例选择策略,用于回归测试。为了开发该方法,我们首先对数据进行清理和预处理。然后将分类数据转换为数值。对测试用例标题等文本特征,我们实现了一种自然语言处理来计算特征包。我们评估了不同的机器学习模型来选择测试用例。实验结果表明,基于机器学习的模型可以避免领域专家进行测试用例选择的人工劳动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信