Bouligand-Levenberg-Marquardt iteration for a non-smooth ill-posed inverse problem

Christian Clason, V. H. Nhu
{"title":"Bouligand-Levenberg-Marquardt iteration for a non-smooth ill-posed inverse problem","authors":"Christian Clason, V. H. Nhu","doi":"10.1553/etna_vol51s274","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a modified Levenberg--Marquardt method for solving an ill-posed inverse problem where the forward mapping is not G\\^ateaux differentiable. By relaxing the standard assumptions for the classical smooth setting, we derive asymptotic stability estimates that are then used to prove the convergence of the proposed method. This method can be applied to an inverse source problem for a non-smooth semilinear elliptic PDE where a Bouligand subdifferential can be used in place of the non-existing Fr\\'echet derivative, and we show that the corresponding Bouligand-Levenberg-Marquardt iteration is an iterative regularization scheme. Numerical examples illustrate the advantage over the corresponding Bouligand-Landweber iteration.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"388 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol51s274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we consider a modified Levenberg--Marquardt method for solving an ill-posed inverse problem where the forward mapping is not G\^ateaux differentiable. By relaxing the standard assumptions for the classical smooth setting, we derive asymptotic stability estimates that are then used to prove the convergence of the proposed method. This method can be applied to an inverse source problem for a non-smooth semilinear elliptic PDE where a Bouligand subdifferential can be used in place of the non-existing Fr\'echet derivative, and we show that the corresponding Bouligand-Levenberg-Marquardt iteration is an iterative regularization scheme. Numerical examples illustrate the advantage over the corresponding Bouligand-Landweber iteration.
非光滑不适定逆问题的Bouligand-Levenberg-Marquardt迭代
在本文中,我们考虑了一种改进的Levenberg—Marquardt方法,用于求解前向映射不是G ^ateaux可微的病态逆问题。通过放宽经典光滑设置的标准假设,我们得到渐近稳定性估计,然后用于证明所提方法的收敛性。该方法可以应用于非光滑半线性椭圆偏微分方程的逆源问题,其中可以用Bouligand子微分代替不存在的Fr\'echet导数,并证明了相应的Bouligand- levenberg - marquardt迭代是一种迭代正则化格式。数值算例说明了该方法优于相应的Bouligand-Landweber迭代法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信