LCM-DS: A novel approach of predicting drug-drug interactions for new drugs via Dempster-Shafer theory of evidence

Jianyu Shi, Ke Gao, Xuequn Shang, S. Yiu
{"title":"LCM-DS: A novel approach of predicting drug-drug interactions for new drugs via Dempster-Shafer theory of evidence","authors":"Jianyu Shi, Ke Gao, Xuequn Shang, S. Yiu","doi":"10.1109/BIBM.2016.7822571","DOIUrl":null,"url":null,"abstract":"There is an urgent need to discover or predict DDIs, which would cause serious adverse drug reactions. However, preclinical detection of DDIs bear high cost. Similarity-based computational approaches can be the assistance of experimental approaches. Utilizing pre-market drug similarities, they are able to predict DDIs on a large scale. However, they neglect the topological structure among DDIs and non-DDIs and have a burden of slow training and much memory. Or, they bear the bias that the pairs between a newly-given drug and the drugs having many DDIs tend to obtain high ranks. More importantly, they lack an effective combination of multiple predictions. To address these issues, we develop a local classification-based model (LCM), which has the advantages of faster training, less memory requirement as well as no that bias. We further design a novel supervised algorithm of fusion based on Dempster-Shafer (DS) theory of evidence for combine multiple predictions. Finally, the experiments demonstrate that our LCM-DS is significantly superior to three state-of-the-art approaches and outperforms both individual LCMs and classical fusion algorithms.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

There is an urgent need to discover or predict DDIs, which would cause serious adverse drug reactions. However, preclinical detection of DDIs bear high cost. Similarity-based computational approaches can be the assistance of experimental approaches. Utilizing pre-market drug similarities, they are able to predict DDIs on a large scale. However, they neglect the topological structure among DDIs and non-DDIs and have a burden of slow training and much memory. Or, they bear the bias that the pairs between a newly-given drug and the drugs having many DDIs tend to obtain high ranks. More importantly, they lack an effective combination of multiple predictions. To address these issues, we develop a local classification-based model (LCM), which has the advantages of faster training, less memory requirement as well as no that bias. We further design a novel supervised algorithm of fusion based on Dempster-Shafer (DS) theory of evidence for combine multiple predictions. Finally, the experiments demonstrate that our LCM-DS is significantly superior to three state-of-the-art approaches and outperforms both individual LCMs and classical fusion algorithms.
LCM-DS:一种基于Dempster-Shafer证据理论预测新药药物相互作用的新方法
迫切需要发现或预测可能引起严重药物不良反应的ddi。然而,ddi的临床前检测成本较高。基于相似度的计算方法可以作为实验方法的辅助。利用上市前药物的相似性,他们能够大规模地预测ddi。然而,它们忽略了ddi和非ddi之间的拓扑结构,并且具有训练慢和内存大的负担。或者,它们承受着一种偏见,即新给药和ddi较多的药物之间的配对往往会获得较高的排名。更重要的是,它们缺乏多种预测的有效组合。为了解决这些问题,我们开发了一种基于局部分类的模型(LCM),该模型具有训练速度快,内存需求少以及没有偏见的优点。我们进一步设计了一种新的基于Dempster-Shafer (DS)证据理论的监督融合算法,用于组合多个预测。最后,实验表明,我们的LCM-DS明显优于三种最先进的方法,并且优于单个lcm和经典融合算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信