Type IIB S-folds: flat deformations, holography and stability

A. Guarino, Colin Sterckx
{"title":"Type IIB S-folds: flat deformations, holography and stability","authors":"A. Guarino, Colin Sterckx","doi":"10.22323/1.406.0163","DOIUrl":null,"url":null,"abstract":"We review recent progress in the study of S-folds in light of the gauge/gravity duality and the AdS swampland conjecture. S-folds correspond to non-geometric backgrounds of type IIB supergravity of the form AdS 4 × S 1 × M that involve a non-trivial SL ( 2 , Z ) (S-duality) monodromy for the type IIB fields when moving around the S 1 . We present four such solutions with M = S 5 that preserve N = 4 , 2 , 1 , 0 supersymmetries. Via the AdS/CFT correspondence, these solutions are conjectured to describe new strongly coupled three-dimensional CFT’s on a localised interface of SYM. We discuss the existence of flat deformations in the gravity side dual to marginal deformations of the conjectured S-fold CFT’s. From a geometrical perspective, the flat deformations induce a monodromy ℎ on M and replace S 1 × M by the so-called mapping torus 𝑇 (M) ℎ . Interestingly, the flat deformations provide a controlled mechanism of supersymmetry breaking for N ≥ 2 S-folds. We present a class of such non-supersymmetric S-folds obtained by flat-deforming the N = 4 S-fold and discuss their (non-)perturbative stability.","PeriodicalId":131792,"journal":{"name":"Proceedings of Corfu Summer Institute 2021 \"School and Workshops on Elementary Particle Physics and Gravity\" — PoS(CORFU2021)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Corfu Summer Institute 2021 \"School and Workshops on Elementary Particle Physics and Gravity\" — PoS(CORFU2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.406.0163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We review recent progress in the study of S-folds in light of the gauge/gravity duality and the AdS swampland conjecture. S-folds correspond to non-geometric backgrounds of type IIB supergravity of the form AdS 4 × S 1 × M that involve a non-trivial SL ( 2 , Z ) (S-duality) monodromy for the type IIB fields when moving around the S 1 . We present four such solutions with M = S 5 that preserve N = 4 , 2 , 1 , 0 supersymmetries. Via the AdS/CFT correspondence, these solutions are conjectured to describe new strongly coupled three-dimensional CFT’s on a localised interface of SYM. We discuss the existence of flat deformations in the gravity side dual to marginal deformations of the conjectured S-fold CFT’s. From a geometrical perspective, the flat deformations induce a monodromy ℎ on M and replace S 1 × M by the so-called mapping torus 𝑇 (M) ℎ . Interestingly, the flat deformations provide a controlled mechanism of supersymmetry breaking for N ≥ 2 S-folds. We present a class of such non-supersymmetric S-folds obtained by flat-deforming the N = 4 S-fold and discuss their (non-)perturbative stability.
IIB型s型褶皱:平面变形、全息、稳定
本文从规范/重力对偶性和AdS沼泽猜想的角度综述了s褶皱研究的最新进展。S褶皱对应于形式为AdS 4 × s1 × M的IIB型超重力的非几何背景,涉及IIB型场在s1周围移动时的非平凡SL (2, Z) (S对偶)单态。我们给出了四个这样的解,M = s5,保持N = 4,2,1,0的超对称性。通过AdS/CFT对应,我们推测了这些解来描述SYM局域界面上新的强耦合三维CFT。我们讨论了在重力侧存在平面变形对偶于推测的s褶CFT的边缘变形。从几何角度看,平面变形在M上产生一个单形集集,用所谓的映射环面𝑇(M) 代替s1 × M。有趣的是,平面变形为N≥2s褶皱的超对称破缺提供了可控机制。本文给出了一类由平面变形得到的非超对称s褶皱,并讨论了它们的(非)微扰稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信