Modeling and Predicting Protein-Protein Interactions of Type 2 Diabetes Mellitus Using Feedforward Neural Networks

A. A. Zulfikar, W. Kusuma
{"title":"Modeling and Predicting Protein-Protein Interactions of Type 2 Diabetes Mellitus Using Feedforward Neural Networks","authors":"A. A. Zulfikar, W. Kusuma","doi":"10.1109/ICACSIS47736.2019.8979989","DOIUrl":null,"url":null,"abstract":"Data of protein-protein interactions (PPIs) are still limited. More data of PPIs are required so one can find significant proteins representing a disease more accurately. Computational approach which can predict PPIs is one of alternatives to reduce time and cost that generally required by experimental work. This research focused on predicting PPIs of Type 2 Diabetes mellitus using feedforward neural network (FNN). Impact of different activation functions, number of units per hidden layers and number of hidden layers themselves to estimation error were observed. Rectifier activation function, seven hidden layers and 36 units per hidden layers gave smallest MSE separately. The model with those configurations predicted a PPI with predicted combined score of 0.922. FNN model had better prediction accuracy than random forest and support vector regression models.","PeriodicalId":165090,"journal":{"name":"2019 International Conference on Advanced Computer Science and information Systems (ICACSIS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Advanced Computer Science and information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS47736.2019.8979989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Data of protein-protein interactions (PPIs) are still limited. More data of PPIs are required so one can find significant proteins representing a disease more accurately. Computational approach which can predict PPIs is one of alternatives to reduce time and cost that generally required by experimental work. This research focused on predicting PPIs of Type 2 Diabetes mellitus using feedforward neural network (FNN). Impact of different activation functions, number of units per hidden layers and number of hidden layers themselves to estimation error were observed. Rectifier activation function, seven hidden layers and 36 units per hidden layers gave smallest MSE separately. The model with those configurations predicted a PPI with predicted combined score of 0.922. FNN model had better prediction accuracy than random forest and support vector regression models.
利用前馈神经网络建模和预测2型糖尿病的蛋白-蛋白相互作用
蛋白质-蛋白质相互作用(PPIs)的数据仍然有限。需要更多的ppi数据,以便更准确地找到代表疾病的重要蛋白质。预测ppi的计算方法是减少实验工作所需的时间和成本的替代方法之一。本研究旨在应用前馈神经网络(FNN)预测2型糖尿病的PPIs。观察了不同激活函数、隐藏层单位数和隐藏层本身数目对估计误差的影响。整流器激活函数,7个隐藏层和每隐藏层36个单元分别给出最小的MSE。具有这些配置的模型对PPI的预测综合得分为0.922。FNN模型的预测精度优于随机森林模型和支持向量回归模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信