Satoshi Suzuki, Shoichiro Takeda, Ryuichi Tanida, H. Kimata, Hayaru Shouno
{"title":"Knowledge Transferred Fine-Tuning for Anti-Aliased Convolutional Neural Network in Data-Limited Situation","authors":"Satoshi Suzuki, Shoichiro Takeda, Ryuichi Tanida, H. Kimata, Hayaru Shouno","doi":"10.1109/ICIP42928.2021.9506696","DOIUrl":null,"url":null,"abstract":"Anti-aliased convolutional neural networks (CNNs) introduce blur filters to intermediate representations in CNNs to achieve high accuracy. A promising way to build a new antialiased CNN is to fine-tune a pre-trained CNN, which can easily be found online, with blur filters. However, blur filters drastically degrade the pre-trained representation, so the fine-tuning needs to rebuild the representation by using massive training data. Therefore, if the training data is limited, the fine-tuning cannot work well because it induces overfitting to the limited training data. To tackle this problem, this paper proposes “knowledge transferred fine-tuning”. On the basis of the idea of knowledge transfer, our method transfers the knowledge from intermediate representations in the pre-trained CNN to the anti-aliased CNN while fine-tuning. We transfer only essential knowledge using a pixel-level loss that transfers detailed knowledge and a global-level loss that transfers coarse knowledge. Experimental results demonstrate that our method significantly outperforms the simple fine-tuning method.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Anti-aliased convolutional neural networks (CNNs) introduce blur filters to intermediate representations in CNNs to achieve high accuracy. A promising way to build a new antialiased CNN is to fine-tune a pre-trained CNN, which can easily be found online, with blur filters. However, blur filters drastically degrade the pre-trained representation, so the fine-tuning needs to rebuild the representation by using massive training data. Therefore, if the training data is limited, the fine-tuning cannot work well because it induces overfitting to the limited training data. To tackle this problem, this paper proposes “knowledge transferred fine-tuning”. On the basis of the idea of knowledge transfer, our method transfers the knowledge from intermediate representations in the pre-trained CNN to the anti-aliased CNN while fine-tuning. We transfer only essential knowledge using a pixel-level loss that transfers detailed knowledge and a global-level loss that transfers coarse knowledge. Experimental results demonstrate that our method significantly outperforms the simple fine-tuning method.