Architectural support for parallel reductions in scalable shared-memory multiprocessors

M. Garzarán, Milos Prvulović, Ye Zhang, J. Torrellas, Alin Jula, Hao Yu, Lawrence Rauchwerger
{"title":"Architectural support for parallel reductions in scalable shared-memory multiprocessors","authors":"M. Garzarán, Milos Prvulović, Ye Zhang, J. Torrellas, Alin Jula, Hao Yu, Lawrence Rauchwerger","doi":"10.1109/PACT.2001.953304","DOIUrl":null,"url":null,"abstract":"Reductions are important and time-consuming operations in many scientific codes. Effective parallelization of reductions is a critical transformation for loop parallelization, especially for sparse, dynamic applications. Unfortunately, conventional reduction parallelization algorithms are not scalable. In this paper, we present new architectural support that significantly speeds up parallel reduction and makes it scalable in shared-memory multiprocessors. The required architectural changes are mostly confined to the directory controllers. Experimental results based on simulations show that the proposed support is very effective. While conventional software-only reduction parallelization delivers average speedups of only 2.7 for 16 processors, our scheme delivers average speedups of 7.6.","PeriodicalId":276650,"journal":{"name":"Proceedings 2001 International Conference on Parallel Architectures and Compilation Techniques","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 International Conference on Parallel Architectures and Compilation Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2001.953304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Reductions are important and time-consuming operations in many scientific codes. Effective parallelization of reductions is a critical transformation for loop parallelization, especially for sparse, dynamic applications. Unfortunately, conventional reduction parallelization algorithms are not scalable. In this paper, we present new architectural support that significantly speeds up parallel reduction and makes it scalable in shared-memory multiprocessors. The required architectural changes are mostly confined to the directory controllers. Experimental results based on simulations show that the proposed support is very effective. While conventional software-only reduction parallelization delivers average speedups of only 2.7 for 16 processors, our scheme delivers average speedups of 7.6.
对可伸缩共享内存多处理器并行缩减的体系结构支持
在许多科学代码中,还原是重要且耗时的操作。有效的并行化约简是循环并行化的一个关键转变,特别是对于稀疏的动态应用。不幸的是,传统的约简并行化算法是不可扩展的。在本文中,我们提出了新的架构支持,可以显著加快并行缩减速度,并使其在共享内存多处理器中具有可扩展性。所需的体系结构更改主要局限于目录控制器。基于仿真的实验结果表明,所提出的支持是非常有效的。传统的纯软件简化并行化在16个处理器上的平均加速只有2.7,而我们的方案提供了7.6的平均加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信