A Deep Learning Framework for Univariate Time Series Prediction Using Convolutional LSTM Stacked Autoencoders

Aniekan Essien, C. Giannetti
{"title":"A Deep Learning Framework for Univariate Time Series Prediction Using Convolutional LSTM Stacked Autoencoders","authors":"Aniekan Essien, C. Giannetti","doi":"10.1109/INISTA.2019.8778417","DOIUrl":null,"url":null,"abstract":"This paper proposes a deep learning framework where wavelet transforms (WT), 2-dimensional Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) stacked autoencoders (SAE) are combined towards single-step time series prediction. Within the framework, the input dataset is denoised using wavelet decomposition, before learning in an unsupervised manner using SAEs comprising bidirectional Convolutional LSTM (ConvLSTM) layers to predict a single-step ahead value. To evaluate our proposed framework, we compared its performance to two (2) state-of-the-art deep learning predictive models using three open-source univariate time series datasets. The experimental results support the value of the approach when applied to univariate time series prediction.","PeriodicalId":262143,"journal":{"name":"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2019.8778417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

This paper proposes a deep learning framework where wavelet transforms (WT), 2-dimensional Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) stacked autoencoders (SAE) are combined towards single-step time series prediction. Within the framework, the input dataset is denoised using wavelet decomposition, before learning in an unsupervised manner using SAEs comprising bidirectional Convolutional LSTM (ConvLSTM) layers to predict a single-step ahead value. To evaluate our proposed framework, we compared its performance to two (2) state-of-the-art deep learning predictive models using three open-source univariate time series datasets. The experimental results support the value of the approach when applied to univariate time series prediction.
基于卷积LSTM堆叠自编码器的单变量时间序列预测深度学习框架
本文提出了一种深度学习框架,将小波变换(WT)、二维卷积神经网络(cnn)和长短期记忆(LSTM)堆叠自编码器(SAE)相结合,实现单步时间序列预测。在框架内,输入数据集使用小波分解去噪,然后使用包含双向卷积LSTM (ConvLSTM)层的sae以无监督的方式学习,以预测单步提前值。为了评估我们提出的框架,我们将其性能与使用三个开源单变量时间序列数据集的两(2)个最先进的深度学习预测模型进行了比较。实验结果支持了该方法在单变量时间序列预测中的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信