Linear filters for deconvolution microscopy

M. Homem, N. Mascarenhas, L. Costa
{"title":"Linear filters for deconvolution microscopy","authors":"M. Homem, N. Mascarenhas, L. Costa","doi":"10.1109/IAI.2004.1300962","DOIUrl":null,"url":null,"abstract":"We present two linear, non-iterative approaches for deconvolution of three-dimensional images that are able to produce good approximations of the true fluorescence concentration in computational optical sectioning microscopy. Both the proposed filters take into account the nature of the noise due to the low level of photon counts. We present some results of the applicability of the methods using a phantom image, where the improvement in signal-to-noise ratio was used in order to quantify the restoration results, and also using real cell images. We compare the algorithms with the regularized linear least squares algorithm considering different levels of Poisson noise.","PeriodicalId":326040,"journal":{"name":"6th IEEE Southwest Symposium on Image Analysis and Interpretation, 2004.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th IEEE Southwest Symposium on Image Analysis and Interpretation, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.2004.1300962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present two linear, non-iterative approaches for deconvolution of three-dimensional images that are able to produce good approximations of the true fluorescence concentration in computational optical sectioning microscopy. Both the proposed filters take into account the nature of the noise due to the low level of photon counts. We present some results of the applicability of the methods using a phantom image, where the improvement in signal-to-noise ratio was used in order to quantify the restoration results, and also using real cell images. We compare the algorithms with the regularized linear least squares algorithm considering different levels of Poisson noise.
用于反褶积显微镜的线性滤波器
我们提出了两种线性的,非迭代的方法,用于三维图像的反卷积,能够在计算光学切片显微镜中产生真实荧光浓度的良好近似。这两种滤波器都考虑到由于光子计数低而引起的噪声的性质。我们提出了一些结果的适用性的方法使用一个幻影图像,其中改进的信噪比是为了量化的恢复结果,也使用真实的细胞图像。将该算法与考虑不同泊松噪声水平的正则化线性最小二乘算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信