Social Network Extraction of Academic Researchers

Jie Tang, Duo Zhang, Limin Yao
{"title":"Social Network Extraction of Academic Researchers","authors":"Jie Tang, Duo Zhang, Limin Yao","doi":"10.1109/ICDM.2007.30","DOIUrl":null,"url":null,"abstract":"This paper addresses the issue of extraction of an academic researcher social network. By researcher social network extraction, we are aimed at finding, extracting, and fusing the 'semantic '-based profiling information of a researcher from the Web. Previously, social network extraction was often undertaken separately in an ad-hoc fashion. This paper first gives a formalization of the entire problem. Specifically, it identifies the 'relevant documents' from the Web by a classifier. It then proposes a unified approach to perform the researcher profiling using conditional random fields (CRF). It integrates publications from the existing bibliography datasets. In the integration, it proposes a constraints-based probabilistic model to name disambiguation. Experimental results on an online system show that the unified approach to researcher profiling significantly outperforms the baseline methods of using rule learning or classification. Experimental results also indicate that our method to name disambiguation performs better than the baseline method using unsupervised learning. The methods have been applied to expert finding. Experiments show that the accuracy of expert finding can be significantly improved by using the proposed methods.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"141","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 141

Abstract

This paper addresses the issue of extraction of an academic researcher social network. By researcher social network extraction, we are aimed at finding, extracting, and fusing the 'semantic '-based profiling information of a researcher from the Web. Previously, social network extraction was often undertaken separately in an ad-hoc fashion. This paper first gives a formalization of the entire problem. Specifically, it identifies the 'relevant documents' from the Web by a classifier. It then proposes a unified approach to perform the researcher profiling using conditional random fields (CRF). It integrates publications from the existing bibliography datasets. In the integration, it proposes a constraints-based probabilistic model to name disambiguation. Experimental results on an online system show that the unified approach to researcher profiling significantly outperforms the baseline methods of using rule learning or classification. Experimental results also indicate that our method to name disambiguation performs better than the baseline method using unsupervised learning. The methods have been applied to expert finding. Experiments show that the accuracy of expert finding can be significantly improved by using the proposed methods.
学术研究人员社交网络提取
本文研究了一个学术研究者社会网络的抽取问题。通过研究人员社交网络提取,我们旨在从网络中发现、提取和融合基于“语义”的研究人员分析信息。在此之前,社交网络的提取通常是单独进行的。本文首先给出了整个问题的形式化。具体来说,它通过分类器从Web中识别“相关文档”。然后提出了一种使用条件随机场(CRF)执行研究人员分析的统一方法。它集成了来自现有书目数据集的出版物。在集成中,提出了一种基于约束的概率模型来实现名称消歧。在线系统的实验结果表明,统一的研究人员分析方法明显优于使用规则学习或分类的基线方法。实验结果还表明,我们的方法比使用无监督学习的基线方法效果更好。该方法已应用于专家寻找。实验表明,采用该方法可以显著提高专家搜索的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信