DDPMnet: All-Digital Pulse Density-Based DNN Architecture with 228 Gate Equivalents/MAC Unit, 28-TOPS/W and 1.5-TOPS/mm2 in 40nm

Animesh Gupta, V. Rajanna, Thoithoi Salam, Saurabh Jain, O. Aiello, P. Crovetti, M. Alioto
{"title":"DDPMnet: All-Digital Pulse Density-Based DNN Architecture with 228 Gate Equivalents/MAC Unit, 28-TOPS/W and 1.5-TOPS/mm2 in 40nm","authors":"Animesh Gupta, V. Rajanna, Thoithoi Salam, Saurabh Jain, O. Aiello, P. Crovetti, M. Alioto","doi":"10.1109/CICC53496.2022.9772786","DOIUrl":null,"url":null,"abstract":"Relentless advances in DNN accelerator energy and area efficiency are demanded in low-cost edge devices [1]–[8]. Both directly benefit from the reduction in the complexity of MAC units (neurons), thanks to the reduction in area and energy of computations and the interconnect fabric. Unfortunately, such area and energy cost per neuron further increases in practical cases where flexibility is needed (e.g., precision scaling), ultimately limiting cost and power reductions. In this work, the all-digital DDPMnet architecture for DNN acceleration based on a pulse density data representation is introduced to reduce the gate count/MAC unit from the thousand range to few hundreds (Fig. 1). The proposed architecture removes any arithmetic block from MAC units (e.g., multipliers), while retaining the advantages of standard cell based design.","PeriodicalId":415990,"journal":{"name":"2022 IEEE Custom Integrated Circuits Conference (CICC)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC53496.2022.9772786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Relentless advances in DNN accelerator energy and area efficiency are demanded in low-cost edge devices [1]–[8]. Both directly benefit from the reduction in the complexity of MAC units (neurons), thanks to the reduction in area and energy of computations and the interconnect fabric. Unfortunately, such area and energy cost per neuron further increases in practical cases where flexibility is needed (e.g., precision scaling), ultimately limiting cost and power reductions. In this work, the all-digital DDPMnet architecture for DNN acceleration based on a pulse density data representation is introduced to reduce the gate count/MAC unit from the thousand range to few hundreds (Fig. 1). The proposed architecture removes any arithmetic block from MAC units (e.g., multipliers), while retaining the advantages of standard cell based design.
DDPMnet:基于全数字脉冲密度的DNN架构,228栅极当量/MAC单元,28-TOPS/W和1.5-TOPS/mm2在40nm
低成本边缘器件[1]-[8]要求DNN加速器的能量和面积效率不断提高。两者都直接受益于MAC单元(神经元)复杂性的降低,这要归功于计算面积和能量的减少以及互连结构。不幸的是,在需要灵活性(例如精确缩放)的实际情况下,每个神经元的面积和能量成本会进一步增加,最终限制了成本和功耗的降低。在这项工作中,引入了基于脉冲密度数据表示的DNN加速全数字DDPMnet架构,以将门数/MAC单元从数千个范围减少到数百个(图1)。所提出的架构删除了MAC单元(例如乘法器)中的任何算术块,同时保留了基于标准单元设计的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信