{"title":"Human motion classification and management based on mocap data analysis","authors":"H. Kadu, May-Chen Kuo, C.-C. Jay Kuo","doi":"10.1145/2072572.2072594","DOIUrl":null,"url":null,"abstract":"Human motion understanding based on motion capture (mocap) data is investigated. Recent rapid developments and applications of mocap systems have resulted in a large corpus of mocap sequences, and an automated annotation technique that can classify basic motion types into multiple categories is needed. A novel technique for automated mocap data classification is developed in this work. Specifically, we adopt the tree-structured vector quantization (TSVQ) method to approximate human poses by codewords and approximate the dynamics of mocap sequences by a codeword sequence. To classify mocap data into different categories, we consider three approaches: 1) the spatial domain approach based on the histogram of codewords, 2) the spatial-time domain approach via codeword sequence matching, and 3) a decision fusion approach. We test the proposed algorithm on the CMU mocap database using the n-fold cross validation procedure and obtain a correct classification rate of 97%.","PeriodicalId":404943,"journal":{"name":"J-HGBU '11","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J-HGBU '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2072572.2072594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Human motion understanding based on motion capture (mocap) data is investigated. Recent rapid developments and applications of mocap systems have resulted in a large corpus of mocap sequences, and an automated annotation technique that can classify basic motion types into multiple categories is needed. A novel technique for automated mocap data classification is developed in this work. Specifically, we adopt the tree-structured vector quantization (TSVQ) method to approximate human poses by codewords and approximate the dynamics of mocap sequences by a codeword sequence. To classify mocap data into different categories, we consider three approaches: 1) the spatial domain approach based on the histogram of codewords, 2) the spatial-time domain approach via codeword sequence matching, and 3) a decision fusion approach. We test the proposed algorithm on the CMU mocap database using the n-fold cross validation procedure and obtain a correct classification rate of 97%.