Online Redundancy Mining in Enterprise WLAN Traffic

Zhiqi Bian, Hongzi Zhu, Guangtao Xue, Minglu Li
{"title":"Online Redundancy Mining in Enterprise WLAN Traffic","authors":"Zhiqi Bian, Hongzi Zhu, Guangtao Xue, Minglu Li","doi":"10.1109/CHINAGRID.2013.14","DOIUrl":null,"url":null,"abstract":"As various types of mobile devices (e.g., smart phones, laptops and tablets) get connected via Wireless Local Area Networks (WLANs), the dramatic demands for wireless bandwidth have posed new challenges for efficient operation and maintenance of enterprise WLANs. Previous studies have found certain degree of redundancy embedded in user data, which stimulates new redundancy elimination schemes implemented on gateways to restrain redundant data being transmitted within one enterprise WLAN. Due to both the computation and storage limitations of gateways, it is very hard to process all user data online and sampling methods are adopted to shrink the size of data streams. Existing methods simply sample the original user data in a random way, leading to low efficiency of finding redundant data. In this paper, we conduct an empirical study on effective sampling strategies using real user trace collected from a university WLAN. We first investigate the extent to which WLAN traffic can be redundant. We then further analyze the distribution characteristics of redundant blocks and find that the position of redundant chunks exhibit strong spatial correlations with previous ones. Our observations thus provide solid foundation for designing new sampling schemes which can capture more redundant data embedded in WLAN data and improve the performance of redundancy elimination schemes.","PeriodicalId":251153,"journal":{"name":"2013 8th ChinaGrid Annual Conference","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th ChinaGrid Annual Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHINAGRID.2013.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As various types of mobile devices (e.g., smart phones, laptops and tablets) get connected via Wireless Local Area Networks (WLANs), the dramatic demands for wireless bandwidth have posed new challenges for efficient operation and maintenance of enterprise WLANs. Previous studies have found certain degree of redundancy embedded in user data, which stimulates new redundancy elimination schemes implemented on gateways to restrain redundant data being transmitted within one enterprise WLAN. Due to both the computation and storage limitations of gateways, it is very hard to process all user data online and sampling methods are adopted to shrink the size of data streams. Existing methods simply sample the original user data in a random way, leading to low efficiency of finding redundant data. In this paper, we conduct an empirical study on effective sampling strategies using real user trace collected from a university WLAN. We first investigate the extent to which WLAN traffic can be redundant. We then further analyze the distribution characteristics of redundant blocks and find that the position of redundant chunks exhibit strong spatial correlations with previous ones. Our observations thus provide solid foundation for designing new sampling schemes which can capture more redundant data embedded in WLAN data and improve the performance of redundancy elimination schemes.
企业WLAN流量的在线冗余挖掘
随着各种类型的移动设备(如智能手机、笔记本电脑和平板电脑)通过无线局域网(wlan)进行连接,对无线带宽的巨大需求对企业wlan的高效运维提出了新的挑战。以往的研究发现用户数据中嵌入了一定程度的冗余,这激发了在网关上实施新的冗余消除方案,以限制在一个企业WLAN内传输冗余数据。由于网关计算和存储的限制,很难在线处理所有用户数据,采用采样方法来缩小数据流的大小。现有的方法只是对原始用户数据进行随机采样,发现冗余数据的效率较低。在本文中,我们对有效的采样策略进行了实证研究,使用从大学无线局域网收集的真实用户跟踪。我们首先研究WLAN流量冗余的程度。我们进一步分析了冗余块的分布特征,发现冗余块的位置与之前的位置具有很强的空间相关性。因此,我们的观察结果为设计新的采样方案提供了坚实的基础,这些方案可以捕获嵌入在WLAN数据中的更多冗余数据,并提高冗余消除方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信