An Effective Contextual Language Ensemble Model for Vietnamese Aspect-based Sentiment Analysis

Dang Van Thin, D. Hao, N. Nguyen
{"title":"An Effective Contextual Language Ensemble Model for Vietnamese Aspect-based Sentiment Analysis","authors":"Dang Van Thin, D. Hao, N. Nguyen","doi":"10.1109/NICS56915.2022.10013429","DOIUrl":null,"url":null,"abstract":"Aspect-based sentiment analysis (ABSA) allows finer-grained inferences to provide specific sentiment for each aspect of the same sentence. In this paper, we present an ensemble model combined with multi-task learning based on different pre-trained contextual language models on a compound task as Category-Sentiment Classification (CSC) for the Vietnamese language. Furthermore, we provide the performance of fine-tuning state-of-the-art pre-trained language BERTology models, which are available for the Vietnamese language. Experimental results demonstrate that our ensemble approach consistently achieves the best results in two out of three datasets benchmark datasets compared to previous results and individual models.","PeriodicalId":381028,"journal":{"name":"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS56915.2022.10013429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Aspect-based sentiment analysis (ABSA) allows finer-grained inferences to provide specific sentiment for each aspect of the same sentence. In this paper, we present an ensemble model combined with multi-task learning based on different pre-trained contextual language models on a compound task as Category-Sentiment Classification (CSC) for the Vietnamese language. Furthermore, we provide the performance of fine-tuning state-of-the-art pre-trained language BERTology models, which are available for the Vietnamese language. Experimental results demonstrate that our ensemble approach consistently achieves the best results in two out of three datasets benchmark datasets compared to previous results and individual models.
面向越南语面向方面情感分析的有效语境语言集成模型
基于方面的情感分析(ABSA)允许更细粒度的推断,为同一句子的每个方面提供特定的情感。在本文中,我们提出了一种基于不同预训练的上下文语言模型的集成模型,该模型结合多任务学习,以越南语的类别-情感分类(CSC)为复合任务。此外,我们还提供了最先进的预训练语言BERTology模型的微调性能,这些模型可用于越南语。实验结果表明,与以前的结果和单个模型相比,我们的集成方法在三个数据集中的两个基准数据集上始终获得最佳结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信