Data Redundancy Dynamic Control Method for High Availability Distributed Clusters

T. Ono, K. Ueda
{"title":"Data Redundancy Dynamic Control Method for High Availability Distributed Clusters","authors":"T. Ono, K. Ueda","doi":"10.1145/3287921.3287967","DOIUrl":null,"url":null,"abstract":"For session control servers of carriers networks, the scale out type session control server architecture that could control system performance flexibly has been studied. Network anomaly detection technology using autoencoder has attracted attention. An autoencoder is one of the dimensionality reduction algorithm using neural network. We propose methods to prevent data loss when serious trouble occurred in network equipment, such as servers and routers, of a high availability distributed cluster using consistent hashing. The methods control data redundancy before serious failure of servers or networks occur using anomaly detection technology. We evaluated three anomalous server selection methods by calculation and computer simulation. We also verified the operation of the data redundancy dynamic control methods by software implementation and operation experiment.","PeriodicalId":448008,"journal":{"name":"Proceedings of the 9th International Symposium on Information and Communication Technology","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Symposium on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3287921.3287967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For session control servers of carriers networks, the scale out type session control server architecture that could control system performance flexibly has been studied. Network anomaly detection technology using autoencoder has attracted attention. An autoencoder is one of the dimensionality reduction algorithm using neural network. We propose methods to prevent data loss when serious trouble occurred in network equipment, such as servers and routers, of a high availability distributed cluster using consistent hashing. The methods control data redundancy before serious failure of servers or networks occur using anomaly detection technology. We evaluated three anomalous server selection methods by calculation and computer simulation. We also verified the operation of the data redundancy dynamic control methods by software implementation and operation experiment.
高可用性分布式集群数据冗余动态控制方法
针对运营商网络的会话控制服务器,研究了可灵活控制系统性能的横向扩展型会话控制服务器体系结构。利用自编码器的网络异常检测技术引起了人们的关注。自编码器是一种基于神经网络的降维算法。我们提出了在高可用性分布式集群的服务器、路由器等网络设备出现严重故障时,使用一致性哈希方法防止数据丢失的方法。该方法利用异常检测技术控制数据冗余,避免服务器或网络出现严重故障。通过计算和计算机模拟,对三种异常服务器选择方法进行了评价。通过软件实现和运行实验验证了数据冗余动态控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信