Mixed Precision ℓ1 Solver for Compressive Depth Reconstruction: An ADMM Case Study

Yun Wu, A. Wallace, A. Aßmann, Brian D. Stewart
{"title":"Mixed Precision ℓ1 Solver for Compressive Depth Reconstruction: An ADMM Case Study","authors":"Yun Wu, A. Wallace, A. Aßmann, Brian D. Stewart","doi":"10.1109/SiPS52927.2021.00021","DOIUrl":null,"url":null,"abstract":"Rapid reconstruction of depth images from sparsely sampled data is important for many machine learning applications, including robot or vehicle assistance or autonomy, which require low power LiDAR sensing for eye safety, and resource reduction for FPGA or solid state implementation, especially with constrained energy budgets. A new compressive depth reconstruction design approach is proposed using a compact ADMM solver for the lasso problem, which varies the precision scaling in an iterative optimization process. Implementations on an FPGA architecture show over 55% savings in hardware resources and 78% in power with only minor reduction in reconstructed depth image quality compared to single float precision.","PeriodicalId":103894,"journal":{"name":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS52927.2021.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid reconstruction of depth images from sparsely sampled data is important for many machine learning applications, including robot or vehicle assistance or autonomy, which require low power LiDAR sensing for eye safety, and resource reduction for FPGA or solid state implementation, especially with constrained energy budgets. A new compressive depth reconstruction design approach is proposed using a compact ADMM solver for the lasso problem, which varies the precision scaling in an iterative optimization process. Implementations on an FPGA architecture show over 55% savings in hardware resources and 78% in power with only minor reduction in reconstructed depth image quality compared to single float precision.
压缩深度重构的混合精度求解器&以ADMM为例
从稀疏采样数据中快速重建深度图像对于许多机器学习应用非常重要,包括机器人或车辆辅助或自动驾驶,这些应用需要低功耗激光雷达感测以确保眼睛安全,并且需要减少FPGA或固态实现的资源,特别是在能源预算有限的情况下。针对lasso问题,提出了一种新的压缩深度重构设计方法,该方法在迭代优化过程中改变精度尺度。与单浮点精度相比,FPGA架构上的实现节省了55%以上的硬件资源和78%的功耗,重建深度图像质量仅略有下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信