Optimal Operators of Hybrid Genetic Algorithm for GMM Parameter Estimation

Sergey Zablotskiy, Teerat Pitakrat, Kseniya Zablotskaya, W. Minker
{"title":"Optimal Operators of Hybrid Genetic Algorithm for GMM Parameter Estimation","authors":"Sergey Zablotskiy, Teerat Pitakrat, Kseniya Zablotskaya, W. Minker","doi":"10.1109/IE.2011.60","DOIUrl":null,"url":null,"abstract":"A genetic algorithm is an evolutionary algorithm that is widely used for solving global optimization problems. It generates the solution in the form of encoded binary chromosome using operators inspired by a natural evolution process: selection, crossover and mutation. In this paper, a hybrid genetic algorithm is applied to the emission probability estimation task of a continuous Hidden Markov Model which is one of the common optimization problems in speech recognition. Three backbone operators of the genetic algorithm are investigated in order to find the optimal Gaussian parameters that result in the best mixture model.","PeriodicalId":207140,"journal":{"name":"2011 Seventh International Conference on Intelligent Environments","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Seventh International Conference on Intelligent Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IE.2011.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A genetic algorithm is an evolutionary algorithm that is widely used for solving global optimization problems. It generates the solution in the form of encoded binary chromosome using operators inspired by a natural evolution process: selection, crossover and mutation. In this paper, a hybrid genetic algorithm is applied to the emission probability estimation task of a continuous Hidden Markov Model which is one of the common optimization problems in speech recognition. Three backbone operators of the genetic algorithm are investigated in order to find the optimal Gaussian parameters that result in the best mixture model.
GMM参数估计的混合遗传算法最优算子
遗传算法是一种广泛用于求解全局优化问题的进化算法。该算法利用自然进化过程中的选择、交叉和变异算子,以编码双染色体的形式生成解决方案。本文将混合遗传算法应用于连续隐马尔可夫模型的发射概率估计任务,这是语音识别中常见的优化问题之一。研究了遗传算法的三个主干算子,以找到最优高斯参数,从而得到最优混合模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信