{"title":"A 10 Gbps full-AES crypto design with a twisted-BDD S-Box architecture","authors":"S. Morioka, Akashi Satoh","doi":"10.1109/ICCD.2002.1106754","DOIUrl":null,"url":null,"abstract":"In this paper, we present a high-speed AES IP-core, which runs at 780 MHz on a 0. 13 /spl mu/m CMOS standard cell library, and which achieves 10 Gbps throughput in all encryption modes, including CBC mode. Although the CBC mode is the most widely used and important, achieving such high throughput was difficult because pipelining techniques cannot be applied. To reduce the propagation delays of the S-Box, the most critical function block, we developed a special circuit architecture that we call twisted-BDD, where the fanout of signals is distributed in the S-Box circuit. Our S-Box is 1.5 to 2 times faster than the conventional S-Box implementations. The T-Box algorithm, which merges the S-Box and another primitive function (MixColumns) into a single function, is also used for an additional speedup.","PeriodicalId":164768,"journal":{"name":"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2002.1106754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55
Abstract
In this paper, we present a high-speed AES IP-core, which runs at 780 MHz on a 0. 13 /spl mu/m CMOS standard cell library, and which achieves 10 Gbps throughput in all encryption modes, including CBC mode. Although the CBC mode is the most widely used and important, achieving such high throughput was difficult because pipelining techniques cannot be applied. To reduce the propagation delays of the S-Box, the most critical function block, we developed a special circuit architecture that we call twisted-BDD, where the fanout of signals is distributed in the S-Box circuit. Our S-Box is 1.5 to 2 times faster than the conventional S-Box implementations. The T-Box algorithm, which merges the S-Box and another primitive function (MixColumns) into a single function, is also used for an additional speedup.