Phoneme recognition based on distinctive phonetic features (DPFs) incorporating a syllable based language model

M. N. Huda, Manoj Banik, G. Muhammad, Bernd J. Kroger
{"title":"Phoneme recognition based on distinctive phonetic features (DPFs) incorporating a syllable based language model","authors":"M. N. Huda, Manoj Banik, G. Muhammad, Bernd J. Kroger","doi":"10.1109/ICCIT.2009.5407123","DOIUrl":null,"url":null,"abstract":"This paper presents a phoneme recognition method based on distinctive phonetic features (DPFs). The method comprises three stages. The first stage extracts 3 DPF vectors of 15 dimensions each from local features (LFs) of an input speech signal using three multilayer neural networks (MLNs). The second stage incorporates an Inhibition/Enhancement (In/En) network to obtain more categorical DPF movement and decorrelates the DPF vectors using the Gram-Schmidt orthogonalization procedure. Then, the third stage embeds acoustic models (AMs) and language models (LMs) of syllable-based subwords to output more precise phoneme strings. The proposed method provides a higher phoneme correct rate as well as phoneme accuracy with fewer mixture components in hidden Markov models (HMMs).","PeriodicalId":443258,"journal":{"name":"2009 12th International Conference on Computers and Information Technology","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 12th International Conference on Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT.2009.5407123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a phoneme recognition method based on distinctive phonetic features (DPFs). The method comprises three stages. The first stage extracts 3 DPF vectors of 15 dimensions each from local features (LFs) of an input speech signal using three multilayer neural networks (MLNs). The second stage incorporates an Inhibition/Enhancement (In/En) network to obtain more categorical DPF movement and decorrelates the DPF vectors using the Gram-Schmidt orthogonalization procedure. Then, the third stage embeds acoustic models (AMs) and language models (LMs) of syllable-based subwords to output more precise phoneme strings. The proposed method provides a higher phoneme correct rate as well as phoneme accuracy with fewer mixture components in hidden Markov models (HMMs).
基于独特语音特征的音素识别,并结合基于音节的语言模型
提出了一种基于显著语音特征的音素识别方法。该方法包括三个阶段。第一阶段使用三个多层神经网络(mln)从输入语音信号的局部特征(LFs)中提取3个各为15维的DPF向量。第二阶段采用抑制/增强(In/En)网络来获得更分类的DPF运动,并使用Gram-Schmidt正交化过程解除DPF向量的关联。然后,第三阶段嵌入基于音节的子词的声学模型(AMs)和语言模型(lm),以输出更精确的音素字符串。该方法在隐马尔可夫模型(hmm)中具有较高的音素正确率和较少的混合成分的音素准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信