Yi Wang, W. Luk, Xuan Zeng, Jun Tao, Changhao Yan, J. Tong, W. Cai, Jia Ni
{"title":"Timing yield driven clock skew scheduling considering non-Gaussian distributions of critical path delays","authors":"Yi Wang, W. Luk, Xuan Zeng, Jun Tao, Changhao Yan, J. Tong, W. Cai, Jia Ni","doi":"10.1145/1391469.1391525","DOIUrl":null,"url":null,"abstract":"In nanometer technologies, process variations possess growing nonlinear impacts on circuit performance, which causes critical path delays of combinatorial circuits variate randomly with non-Gaussian distribution. In this paper, we propose a novel clock skew scheduling methodology that optimizes timing yield by handling non-Gaussian distributions of critical path delays. Firstly a general formulation of the optimization problem is proposed, which covers most of the previous formulations and indicates their limitations with statistical interpretations. Then a generalized minimum balancing algorithm is proposed for effectively solving the skew scheduling problem. Experimental results show that the proposed method significantly outperforms some representative methods previously proposed for yield optimization, and could obtain timing yield improvements up to 33.6% and averagely 17.7%.","PeriodicalId":412696,"journal":{"name":"2008 45th ACM/IEEE Design Automation Conference","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 45th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1391469.1391525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
In nanometer technologies, process variations possess growing nonlinear impacts on circuit performance, which causes critical path delays of combinatorial circuits variate randomly with non-Gaussian distribution. In this paper, we propose a novel clock skew scheduling methodology that optimizes timing yield by handling non-Gaussian distributions of critical path delays. Firstly a general formulation of the optimization problem is proposed, which covers most of the previous formulations and indicates their limitations with statistical interpretations. Then a generalized minimum balancing algorithm is proposed for effectively solving the skew scheduling problem. Experimental results show that the proposed method significantly outperforms some representative methods previously proposed for yield optimization, and could obtain timing yield improvements up to 33.6% and averagely 17.7%.