Predicting the Heating Time of Palm oil using Optimal Selection of Color Parameters and Machine Learning

Zelong Zhuang, Wenbo Zhu, Jianwen Chen, Jinhai Wang, Lufeng Luo, Guoqiang Li
{"title":"Predicting the Heating Time of Palm oil using Optimal Selection of Color Parameters and Machine Learning","authors":"Zelong Zhuang, Wenbo Zhu, Jianwen Chen, Jinhai Wang, Lufeng Luo, Guoqiang Li","doi":"10.1145/3508259.3508286","DOIUrl":null,"url":null,"abstract":"The heating time of palm oil can affect its quality indicators such as free fatty acids (FFA), smoke point (SP), anisidine value (AnV), induction period (IP), polar compounds, color, etc. Prediction of the heating time of palm oil in high temperatures is guidance for monitoring its quality. This paper proposes a computer vision model that can rapidly predict palm oil's heating time at a typical frying temperature (180℃). Firstly, we use YOLOv3 to detect palm oil samples in the images. Secondly, we extract the color parameters of palm oil and construct five kinds of feature vectors: (), (), (), () and (). Thirdly, we use Random Forest Regressor, Random Forest Classifier, SVR, SVC, BP Neural Network to construct heating time prediction models and make a comparison. Finally, we select the best prediction model combined with YOLOv3 to detect palm oil samples and predict their heating time. The results show that when (,,) is used as the color parameter and SVC is used as the heating time prediction model, the prediction accuracy is the highest, reaching 97.2%.","PeriodicalId":259099,"journal":{"name":"Proceedings of the 2021 4th Artificial Intelligence and Cloud Computing Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 4th Artificial Intelligence and Cloud Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508259.3508286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The heating time of palm oil can affect its quality indicators such as free fatty acids (FFA), smoke point (SP), anisidine value (AnV), induction period (IP), polar compounds, color, etc. Prediction of the heating time of palm oil in high temperatures is guidance for monitoring its quality. This paper proposes a computer vision model that can rapidly predict palm oil's heating time at a typical frying temperature (180℃). Firstly, we use YOLOv3 to detect palm oil samples in the images. Secondly, we extract the color parameters of palm oil and construct five kinds of feature vectors: (), (), (), () and (). Thirdly, we use Random Forest Regressor, Random Forest Classifier, SVR, SVC, BP Neural Network to construct heating time prediction models and make a comparison. Finally, we select the best prediction model combined with YOLOv3 to detect palm oil samples and predict their heating time. The results show that when (,,) is used as the color parameter and SVC is used as the heating time prediction model, the prediction accuracy is the highest, reaching 97.2%.
利用颜色参数的最优选择和机器学习预测棕榈油加热时间
棕榈油的加热时间会影响其质量指标,如游离脂肪酸(FFA)、烟点(SP)、茴香胺值(AnV)、诱导期(IP)、极性化合物、颜色等。预测棕榈油在高温下的加热时间对其质量监测具有指导意义。本文提出了一种计算机视觉模型,可以快速预测棕榈油在典型油炸温度(180℃)下的加热时间。首先,我们使用YOLOv3对图像中的棕榈油样本进行检测。其次,提取棕榈油颜色参数,构造()、()、()、()、()、()五种特征向量。再次,利用随机森林回归器、随机森林分类器、SVR、SVC、BP神经网络构建供热时间预测模型并进行比较。最后,结合YOLOv3选择最佳预测模型对棕榈油样品进行检测并预测其加热时间。结果表明,以(,,)作为颜色参数,以SVC作为加热时间预测模型时,预测精度最高,达到97.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信