Explicit Estimates for Solutions of Mixed Elliptic Problems

Luisa Consiglieri
{"title":"Explicit Estimates for Solutions of Mixed Elliptic Problems","authors":"Luisa Consiglieri","doi":"10.1155/2014/845760","DOIUrl":null,"url":null,"abstract":"We deal with the existence of quantitative estimates for solutions of mixed problems to an elliptic second-order equation in divergence form with discontinuous coefficients. Our concern is to estimate the solutions with explicit constants, for domains in ℝn (n≥2) of class C0,1. The existence of L∞ and W1,q estimates is assured for q=2 and any q<n/(n-1) (depending on the data), whenever the coefficient is only measurable and bounded. The proof method of the quantitative L∞ estimates is based on the De Giorgi technique developed by Stampacchia. By using the potential theory, we derive W1,p estimates for different ranges of the exponent p depending on the fact that the coefficient is either Dini-continuous or only measurable and bounded. In this process, we establish new existences of Green functions on such domains. The last but not least concern is to unify (whenever possible) the proofs of the estimates to the extreme Dirichlet and Neumann cases of the mixed problem.","PeriodicalId":312706,"journal":{"name":"International Journal of Partial Differential Equations","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Partial Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/845760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We deal with the existence of quantitative estimates for solutions of mixed problems to an elliptic second-order equation in divergence form with discontinuous coefficients. Our concern is to estimate the solutions with explicit constants, for domains in ℝn (n≥2) of class C0,1. The existence of L∞ and W1,q estimates is assured for q=2 and any q
混合椭圆问题解的显式估计
研究了一类系数不连续的椭圆型二阶散度方程混合问题解的定量估计的存在性。我们关注的是估计具有显式常数的解,对于类C0,1的域,在∈n (n≥2)中。对于q=2和任何q
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信