A new method in obtaining a better generalization in artificial neural networks

B. Kermani, M. White, H. Nagle
{"title":"A new method in obtaining a better generalization in artificial neural networks","authors":"B. Kermani, M. White, H. Nagle","doi":"10.1109/IEMBS.1994.415352","DOIUrl":null,"url":null,"abstract":"Overtraining is a serious problem in the neural network algorithms, including the backpropagation algorithm. In order to measure the performance of a neural network, ordinarily some of the data is sacrificed and used as a test set (cross-validation method). When the data is very scarce or is expensive, e.g. medical applications such as computer aided diagnosis, this waste of the data becomes intolerable. A new technique is introduced which uses the shape of the training mean squared error graph versus number of epochs and predicts when is the best time (epoch number) to discontinue the training.","PeriodicalId":344622,"journal":{"name":"Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1994.415352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Overtraining is a serious problem in the neural network algorithms, including the backpropagation algorithm. In order to measure the performance of a neural network, ordinarily some of the data is sacrificed and used as a test set (cross-validation method). When the data is very scarce or is expensive, e.g. medical applications such as computer aided diagnosis, this waste of the data becomes intolerable. A new technique is introduced which uses the shape of the training mean squared error graph versus number of epochs and predicts when is the best time (epoch number) to discontinue the training.
一种获得人工神经网络更好泛化的新方法
过度训练是包括反向传播算法在内的神经网络算法中的一个严重问题。为了测量神经网络的性能,通常会牺牲一些数据并将其用作测试集(交叉验证方法)。当数据非常稀缺或昂贵时,例如计算机辅助诊断等医疗应用,这种数据浪费就变得无法容忍。介绍了一种利用训练均方误差图的形状与历元数的关系来预测何时是停止训练的最佳时间(历元数)的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信