Enhancing Explicit and Implicit Feature Interactions via Information Sharing for Parallel Deep CTR Models

Bo Chen, Yichao Wang, Zhirong Liu, Ruiming Tang, Wei Guo, Hongkun Zheng, Weiwei Yao, Muyu Zhang, Xiuqiang He
{"title":"Enhancing Explicit and Implicit Feature Interactions via Information Sharing for Parallel Deep CTR Models","authors":"Bo Chen, Yichao Wang, Zhirong Liu, Ruiming Tang, Wei Guo, Hongkun Zheng, Weiwei Yao, Muyu Zhang, Xiuqiang He","doi":"10.1145/3459637.3481915","DOIUrl":null,"url":null,"abstract":"Effectively modeling feature interactions is crucial for CTR prediction in industrial recommender systems. The state-of-the-art deep CTR models with parallel structure (e.g., DCN) learn explicit and implicit feature interactions through independent parallel networks. However, these models suffer from trivial sharing issues, namely insufficient sharing in hidden layers and excessive sharing in network input, limiting the model's expressiveness and effectiveness. Therefore, to enhance information sharing between explicit and implicit feature interactions, we propose a novel deep CTR model EDCN. EDCN introduces two advanced modules, namely bridge module and regulation module, which work collaboratively to capture the layer-wise interactive signals and learn discriminative feature distributions for each hidden layer of the parallel networks. Furthermore, two modules are lightweight and model-agnostic, which can be generalized well to mainstream parallel deep CTR models. Extensive experiments and studies are conducted to demonstrate the effectiveness of EDCN on two public datasets and one industrial dataset. Moreover, the compatibility of two modules over various parallel-structured models is verified, and they have been deployed onto the online advertising platform in Huawei, where a one-month A/B test demonstrates the improvement over the base parallel-structured model by 7.30% and 4.85% in terms of CTR and eCPM, respectively.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3481915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Effectively modeling feature interactions is crucial for CTR prediction in industrial recommender systems. The state-of-the-art deep CTR models with parallel structure (e.g., DCN) learn explicit and implicit feature interactions through independent parallel networks. However, these models suffer from trivial sharing issues, namely insufficient sharing in hidden layers and excessive sharing in network input, limiting the model's expressiveness and effectiveness. Therefore, to enhance information sharing between explicit and implicit feature interactions, we propose a novel deep CTR model EDCN. EDCN introduces two advanced modules, namely bridge module and regulation module, which work collaboratively to capture the layer-wise interactive signals and learn discriminative feature distributions for each hidden layer of the parallel networks. Furthermore, two modules are lightweight and model-agnostic, which can be generalized well to mainstream parallel deep CTR models. Extensive experiments and studies are conducted to demonstrate the effectiveness of EDCN on two public datasets and one industrial dataset. Moreover, the compatibility of two modules over various parallel-structured models is verified, and they have been deployed onto the online advertising platform in Huawei, where a one-month A/B test demonstrates the improvement over the base parallel-structured model by 7.30% and 4.85% in terms of CTR and eCPM, respectively.
通过信息共享增强并行深度CTR模型的显式和隐式特征交互
在工业推荐系统中,有效地建模特征交互对于CTR预测至关重要。最先进的具有并行结构的深度CTR模型(例如DCN)通过独立的并行网络学习显式和隐式特征交互。然而,这些模型存在着一些微不足道的共享问题,即隐藏层的共享不足和网络输入的共享过多,限制了模型的表达性和有效性。因此,为了增强显式和隐式特征交互之间的信息共享,我们提出了一种新的深度CTR模型EDCN。EDCN引入了桥接模块和调节模块两个高级模块,它们协同工作以捕获分层交互信号并学习并行网络中每个隐藏层的判别特征分布。此外,这两个模块轻量级且与模型无关,可以很好地推广到主流并行深度CTR模型中。为了证明EDCN在两个公共数据集和一个工业数据集上的有效性,进行了大量的实验和研究。验证了两个模块在多种并行结构模型上的兼容性,并将其部署到华为在线广告平台上,经过一个月的a /B测试,CTR和eCPM分别比基本并行结构模型提高了7.30%和4.85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信