An Improved Online Multidimensional Bin Packing Algorithm

Vincent Portella, Hong Shen
{"title":"An Improved Online Multidimensional Bin Packing Algorithm","authors":"Vincent Portella, Hong Shen","doi":"10.1109/PDCAT46702.2019.00094","DOIUrl":null,"url":null,"abstract":"As a fundamental optimization problem, the problem of packing a given set of objects into the fewest possible bins has both important theoretical significance in algorithms and operations research and great application values for resource allocation, particularly in cloud computing and data center management. In this paper we address the multidimensional online bin packing problem and present an algorithm based on the ROUNDdM algorithm proposed by Csirik & Van Vliet [6]. The ROUNDdM algorithm is a generalisation of the harmonic partitioning scheme in [7], and guarantees a worst case approximation ratio of 1.691d for d-dimensions and an average case ratio of 1.2899d. Our HYBRID-ROUNDdM algorithm uses a harmonic based hybrid partitioning scheme and improves this average case approximation ratio to 1.0797d while guaranteeing the same worst case approximation ratio.","PeriodicalId":166126,"journal":{"name":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT46702.2019.00094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

As a fundamental optimization problem, the problem of packing a given set of objects into the fewest possible bins has both important theoretical significance in algorithms and operations research and great application values for resource allocation, particularly in cloud computing and data center management. In this paper we address the multidimensional online bin packing problem and present an algorithm based on the ROUNDdM algorithm proposed by Csirik & Van Vliet [6]. The ROUNDdM algorithm is a generalisation of the harmonic partitioning scheme in [7], and guarantees a worst case approximation ratio of 1.691d for d-dimensions and an average case ratio of 1.2899d. Our HYBRID-ROUNDdM algorithm uses a harmonic based hybrid partitioning scheme and improves this average case approximation ratio to 1.0797d while guaranteeing the same worst case approximation ratio.
一种改进的在线多维装箱算法
将给定的一组对象打包到尽可能少的bins中,是一个基本的优化问题,在算法和运筹学中具有重要的理论意义,在资源分配特别是云计算和数据中心管理中具有重要的应用价值。本文针对多维在线装箱问题,提出了一种基于Csirik和Van Vliet提出的ROUNDdM算法的在线装箱算法。ROUNDdM算法是[7]中谐波分割方案的推广,并保证d维的最坏情况近似比为1.691d,平均情况比为1.2899d。我们的hybrid - rounddm算法使用一种基于谐波的混合分割方案,在保证相同的最坏情况近似比的同时,将该平均情况近似比提高到1.0797d。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信