Prediction of Research Project Execution using Data Augmentation and Deep Learning

Anibal Flores, Hugo Tito-Chura, Lissethe Zea-Rospigliosi
{"title":"Prediction of Research Project Execution using Data Augmentation and Deep Learning","authors":"Anibal Flores, Hugo Tito-Chura, Lissethe Zea-Rospigliosi","doi":"10.4114/intartif.vol26iss71pp46-58","DOIUrl":null,"url":null,"abstract":"This paper presents the results of seven deep learning models for prediction of research project execution in graduates from a public university in Peru. The deep learning models implemented are non-hybrid: Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Convolutional Neural Networks (CNN) and, hybrid: CNN+GRU, CNN+ LSTM and LSTM+GRU. Since most of the dataset prediction features are of the nominal type (true false), this paper proposes a simple novel data augmentation technique for this type of features. Taking as inspiration the input data type of a neural network, the proposal data augmentation technique considers nominal features as numeric, and obtain random values close to them to generate synthetic records. The results show that most of deep learning models with data augmentation significantly outperform models without data augmentation in terms of accuracy, precision, f1-score and specificity, being the main improvements of 17.39%, 66.67%, 25.00% and 25.00% respectively.","PeriodicalId":176050,"journal":{"name":"Inteligencia Artif.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artif.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/intartif.vol26iss71pp46-58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the results of seven deep learning models for prediction of research project execution in graduates from a public university in Peru. The deep learning models implemented are non-hybrid: Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Convolutional Neural Networks (CNN) and, hybrid: CNN+GRU, CNN+ LSTM and LSTM+GRU. Since most of the dataset prediction features are of the nominal type (true false), this paper proposes a simple novel data augmentation technique for this type of features. Taking as inspiration the input data type of a neural network, the proposal data augmentation technique considers nominal features as numeric, and obtain random values close to them to generate synthetic records. The results show that most of deep learning models with data augmentation significantly outperform models without data augmentation in terms of accuracy, precision, f1-score and specificity, being the main improvements of 17.39%, 66.67%, 25.00% and 25.00% respectively.
使用数据增强和深度学习的研究项目执行预测
本文介绍了秘鲁一所公立大学毕业生研究项目执行预测的七个深度学习模型的结果。实现的深度学习模型是非混合型的:深度神经网络(DNN)、长短期记忆(LSTM)、门控循环单元(GRU)、卷积神经网络(CNN)和混合型:CNN+GRU、CNN+ LSTM和LSTM+GRU。由于大多数数据集预测特征都是名义类型(真、假),本文针对这类特征提出了一种简单新颖的数据增强技术。该方法以神经网络的输入数据类型为灵感,将标称特征视为数值,获取与之相近的随机值生成合成记录。结果表明,大多数经过数据增强的深度学习模型在准确率、精密度、f1评分和特异性方面均显著优于未经数据增强的模型,分别提高了17.39%、66.67%、25.00%和25.00%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信