Topic Influence Graph Based Analysis of Seminal Papers

Abhirut Gupta, Sandipan Sikdar, P. Mohapatra, Niloy Ganguly
{"title":"Topic Influence Graph Based Analysis of Seminal Papers","authors":"Abhirut Gupta, Sandipan Sikdar, P. Mohapatra, Niloy Ganguly","doi":"10.1145/3371158.3371191","DOIUrl":null,"url":null,"abstract":"Every scientific article attempts to derive knowledge from existing literature and augment it with new insights. This dynamics of knowledge is commonly explored through references (it draws knowledge from) and citations (its impact on the field). In this paper, we propose to explore this phenomenon through construction of a topic influence graph (TIG) based on topic similarity between articles. More importantly, out of the set of possible TIGs, we determine an optimal TIG by using knowledge from citation graphs. Construction of TIG leverages traditional network analysis tools like community (sub-field) identification. In this paper, we construct the TIG on the ACL Anthology Network (AAN) dataset and leverage it to analyze the properties of seminal papers. Interestingly, we observe that seminal papers disseminate knowledge across different communities, trigger more research within its own community and apart from introducing new ideas, string together ideas from different communities.","PeriodicalId":360747,"journal":{"name":"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3371158.3371191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Every scientific article attempts to derive knowledge from existing literature and augment it with new insights. This dynamics of knowledge is commonly explored through references (it draws knowledge from) and citations (its impact on the field). In this paper, we propose to explore this phenomenon through construction of a topic influence graph (TIG) based on topic similarity between articles. More importantly, out of the set of possible TIGs, we determine an optimal TIG by using knowledge from citation graphs. Construction of TIG leverages traditional network analysis tools like community (sub-field) identification. In this paper, we construct the TIG on the ACL Anthology Network (AAN) dataset and leverage it to analyze the properties of seminal papers. Interestingly, we observe that seminal papers disseminate knowledge across different communities, trigger more research within its own community and apart from introducing new ideas, string together ideas from different communities.
基于主题影响图的学术论文分析
每一篇科学文章都试图从现有文献中获得知识,并用新的见解加以补充。这种知识的动态通常通过参考文献(它从中吸取知识)和引用(它对该领域的影响)来探索。在本文中,我们提出通过构建基于文章之间主题相似度的主题影响图(TIG)来探索这一现象。更重要的是,在一组可能的TIG中,我们通过使用引用图中的知识来确定最优TIG。TIG的构建利用了社区(子场)识别等传统的网络分析工具。在本文中,我们在ACL文集网络(AAN)数据集上构建了TIG,并利用它来分析开创性论文的性质。有趣的是,我们观察到,开创性的论文在不同的社区传播知识,在自己的社区引发更多的研究,除了引入新的想法,还将来自不同社区的想法串联在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信