Stabilization of singular fractional-order systems: A linear matrix inequality approach

Xiaona Song, Leipo Liu, Zhen Wang
{"title":"Stabilization of singular fractional-order systems: A linear matrix inequality approach","authors":"Xiaona Song, Leipo Liu, Zhen Wang","doi":"10.1109/ICAL.2012.6308163","DOIUrl":null,"url":null,"abstract":"In this study, the problems of stability and stabilization for singular fractional-order (SFO) systems have been studied. For the stability problem, conditions are given such that the SFO system is regular and stable; while for the stabilization problem, we design a state feedback control law which guarantees the resulting closed-loop system is stable. In terms of linear matrix inequality, an explicit expression for the desired state feedback control is given. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed method.","PeriodicalId":373152,"journal":{"name":"2012 IEEE International Conference on Automation and Logistics","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Automation and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAL.2012.6308163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In this study, the problems of stability and stabilization for singular fractional-order (SFO) systems have been studied. For the stability problem, conditions are given such that the SFO system is regular and stable; while for the stabilization problem, we design a state feedback control law which guarantees the resulting closed-loop system is stable. In terms of linear matrix inequality, an explicit expression for the desired state feedback control is given. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed method.
奇异分数阶系统的镇定:线性矩阵不等式方法
本文研究了奇异分数阶系统的稳定性和镇定问题。对于稳定性问题,给出了SFO系统正则稳定的条件;对于镇定问题,设计了状态反馈控制律,保证了闭环系统的稳定。利用线性矩阵不等式,给出了期望状态反馈控制的显式表达式。最后,通过数值算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信