End-to-end single-shot composite fringe projection profilometry based on deep learning

Yixuan Li, Jiaming Qian, Shijie Feng, Qian Chen, C. Zuo
{"title":"End-to-end single-shot composite fringe projection profilometry based on deep learning","authors":"Yixuan Li, Jiaming Qian, Shijie Feng, Qian Chen, C. Zuo","doi":"10.1117/12.2587728","DOIUrl":null,"url":null,"abstract":"Using a single fringe image to complete the dynamic absolute 3D reconstruction has become a tremendous challenge and an eternal pursuit for researchers. In fringe projection profilometry (FPP), although many methods can achieve high-precision 3D reconstruction from simple system architecture via appropriate encoding ways, they usually cannot retrieve the absolute 3D information of objects with complex surfaces through only a single fringe pattern. In this work, we develop a single-frame composite fringe encoding approach and use a deep convolutional neural network to retrieve the absolute phase of the object from this composite pattern end to- end. The proposed method can directly obtain spectrum-aliasing-free phase information and robust phase unwrapping from single-frame compound input through extensive data learning. Experiments have demonstrated that the proposed deep-learning-based approach can achieve absolute phase retrieval using a single image.","PeriodicalId":370739,"journal":{"name":"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2587728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Using a single fringe image to complete the dynamic absolute 3D reconstruction has become a tremendous challenge and an eternal pursuit for researchers. In fringe projection profilometry (FPP), although many methods can achieve high-precision 3D reconstruction from simple system architecture via appropriate encoding ways, they usually cannot retrieve the absolute 3D information of objects with complex surfaces through only a single fringe pattern. In this work, we develop a single-frame composite fringe encoding approach and use a deep convolutional neural network to retrieve the absolute phase of the object from this composite pattern end to- end. The proposed method can directly obtain spectrum-aliasing-free phase information and robust phase unwrapping from single-frame compound input through extensive data learning. Experiments have demonstrated that the proposed deep-learning-based approach can achieve absolute phase retrieval using a single image.
基于深度学习的端到端单镜头复合条纹投影轮廓术
利用单幅条纹图像完成动态绝对三维重建已成为研究人员的巨大挑战和永恒追求。在条纹投影轮廓法(FPP)中,虽然有许多方法可以通过适当的编码方式从简单的系统架构中实现高精度的三维重建,但它们通常无法仅通过单一的条纹模式获取具有复杂表面的物体的绝对三维信息。在这项工作中,我们开发了一种单帧复合条纹编码方法,并使用深度卷积神经网络从该复合图案端到端检索对象的绝对相位。该方法通过广泛的数据学习,可以直接从单帧复合输入中获得无频谱混叠的相位信息和鲁棒的相位展开。实验表明,基于深度学习的方法可以实现单幅图像的绝对相位检索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信