{"title":"Wiring brain and artificial neurons through neural interfaces and memristive synapses: The first steps","authors":"S. Vassanelli","doi":"10.1109/IWASI.2017.7974206","DOIUrl":null,"url":null,"abstract":"Neural interfaces are making it possible to record and stimulate brain activity at high spatiotemporal resolution, at the level of single neurons and across neural networks. In parallel, brain-inspired nano- and microelectronic devices and circuits are being developed that emulate functional properties of biological neurons and networks. Memristors, in particular, are promising candidates to emulate synapses in terms of transmission and signal processing capability. We show first evidence that memristors can be used to compress information of signals from biological neurons as recorded by high-resolution multielectrode arrays and discuss the perspective that these devices will serve as synaptic-like bioelectronic links between biological neurons and artificial counterparts in advanced brain-chip interfaces.","PeriodicalId":332606,"journal":{"name":"2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWASI.2017.7974206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Neural interfaces are making it possible to record and stimulate brain activity at high spatiotemporal resolution, at the level of single neurons and across neural networks. In parallel, brain-inspired nano- and microelectronic devices and circuits are being developed that emulate functional properties of biological neurons and networks. Memristors, in particular, are promising candidates to emulate synapses in terms of transmission and signal processing capability. We show first evidence that memristors can be used to compress information of signals from biological neurons as recorded by high-resolution multielectrode arrays and discuss the perspective that these devices will serve as synaptic-like bioelectronic links between biological neurons and artificial counterparts in advanced brain-chip interfaces.