Finding Dense Locations in Indoor Tracking Data

Tanvir Ahmed, T. Pedersen, Hua Lu
{"title":"Finding Dense Locations in Indoor Tracking Data","authors":"Tanvir Ahmed, T. Pedersen, Hua Lu","doi":"10.1109/MDM.2014.29","DOIUrl":null,"url":null,"abstract":"Finding the dense locations in large indoor spaces is very useful for getting overloaded locations, security, crowd management, indoor navigation, and guidance. Indoor tracking data can be very large and are not readily available for finding dense locations. This paper presents a graph-based model for semi-constrained indoor movement, and then uses this to map raw tracking records into mapping records representing object entry and exit times in particular locations. Then, an efficient indexing structure, the Dense Location Time Index (DLT-Index) is proposed for indexing the time intervals of the mapping table, along with associated construction, query processing, and pruning techniques. The DLT-Index supports very efficient aggregate point queries, interval queries, and dense location queries. A comprehensive experimental study with real data shows that the proposed techniques can efficiently find dense locations in large amounts of indoor tracking data.","PeriodicalId":322071,"journal":{"name":"2014 IEEE 15th International Conference on Mobile Data Management","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 15th International Conference on Mobile Data Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2014.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Finding the dense locations in large indoor spaces is very useful for getting overloaded locations, security, crowd management, indoor navigation, and guidance. Indoor tracking data can be very large and are not readily available for finding dense locations. This paper presents a graph-based model for semi-constrained indoor movement, and then uses this to map raw tracking records into mapping records representing object entry and exit times in particular locations. Then, an efficient indexing structure, the Dense Location Time Index (DLT-Index) is proposed for indexing the time intervals of the mapping table, along with associated construction, query processing, and pruning techniques. The DLT-Index supports very efficient aggregate point queries, interval queries, and dense location queries. A comprehensive experimental study with real data shows that the proposed techniques can efficiently find dense locations in large amounts of indoor tracking data.
在室内跟踪数据中寻找密集位置
在大型室内空间中找到密集的位置对于获得超载位置、安全性、人群管理、室内导航和引导非常有用。室内跟踪数据可能非常大,不容易用于寻找密集的位置。本文提出了一种基于图的半约束室内运动模型,然后使用该模型将原始跟踪记录映射为表示特定位置对象进入和退出时间的映射记录。然后,提出了一种高效的索引结构,密集位置时间索引(DLT-Index),用于索引映射表的时间间隔,以及相关的构造、查询处理和修剪技术。DLT-Index支持非常高效的聚合点查询、区间查询和密集位置查询。实际数据的综合实验研究表明,该方法能够在大量室内跟踪数据中有效地找到密集位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信