Microalgae Detection Based on Cascade R-CNN Object Detection Model

Guoyu Yang, Siyu Cheng, Jie Lei
{"title":"Microalgae Detection Based on Cascade R-CNN Object Detection Model","authors":"Guoyu Yang, Siyu Cheng, Jie Lei","doi":"10.1109/UV56588.2022.10185531","DOIUrl":null,"url":null,"abstract":"Marine microalgae are one of the significant biological resources in marine ecosystems and a part of the “blue carbon sink.” Artificial identification of marine microalgae usually takes a lot of time, so using the object detection method to detect microalgae automatically can save a lot of artificial resources. The official website provides an algae dataset in the IEEE UV 2022 “Vision Meets Algae” object detection challenge. However, this dataset contains many small objects, which is unfavorable for the object detection model to identify algae. We use Cascade R-CNN with the backbone ConvNeXt-B as our main object detection model in this challenge. To make the model recognize small objects well, we increase the input image size and add global context to the model. During training, we used data augmentation and multi-scale training strategies that improved the performance of the model. Finally, to improve the detection performance, we integrate Cascade R-CNN, TOOD, and GFL. We evaluated our method on the test set. The mAP of Cascade R-CNN reached 54.69, while the mAP of model integration reached 56.22.","PeriodicalId":211011,"journal":{"name":"2022 6th International Conference on Universal Village (UV)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Universal Village (UV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UV56588.2022.10185531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Marine microalgae are one of the significant biological resources in marine ecosystems and a part of the “blue carbon sink.” Artificial identification of marine microalgae usually takes a lot of time, so using the object detection method to detect microalgae automatically can save a lot of artificial resources. The official website provides an algae dataset in the IEEE UV 2022 “Vision Meets Algae” object detection challenge. However, this dataset contains many small objects, which is unfavorable for the object detection model to identify algae. We use Cascade R-CNN with the backbone ConvNeXt-B as our main object detection model in this challenge. To make the model recognize small objects well, we increase the input image size and add global context to the model. During training, we used data augmentation and multi-scale training strategies that improved the performance of the model. Finally, to improve the detection performance, we integrate Cascade R-CNN, TOOD, and GFL. We evaluated our method on the test set. The mAP of Cascade R-CNN reached 54.69, while the mAP of model integration reached 56.22.
基于级联R-CNN目标检测模型的微藻检测
海洋微藻是海洋生态系统中重要的生物资源之一,是“蓝色碳汇”的一部分。海洋微藻的人工识别通常需要耗费大量的时间,因此采用目标检测方法对微藻进行自动检测可以节省大量的人工资源。官方网站提供了IEEE UV 2022“视觉与藻类相遇”目标检测挑战中的藻类数据集。然而,该数据集包含许多小目标,这不利于目标检测模型识别藻类。在这个挑战中,我们使用Cascade R-CNN和主干ConvNeXt-B作为我们的主要目标检测模型。为了使模型更好地识别小物体,我们增加了输入图像的大小,并在模型中加入了全局上下文。在训练过程中,我们使用了数据增强和多尺度训练策略来提高模型的性能。最后,为了提高检测性能,我们将Cascade R-CNN、ood和GFL集成在一起。我们在测试集上评估了我们的方法。Cascade R-CNN的mAP达到54.69,而模型整合的mAP达到56.22。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信