Desensitizing control for the heat equation with respect to domain variations

S. Ervedoza, P. Lissy, Y. Privat
{"title":"Desensitizing control for the heat equation with respect to domain variations","authors":"S. Ervedoza, P. Lissy, Y. Privat","doi":"10.5802/jep.209","DOIUrl":null,"url":null,"abstract":". — This article is dedicated to desensitizing issues for a quadratic functional involving the solution of the linear heat equation with respect to domain variations. This work can be seen as a continuation of [28], insofar as we generalize several of the results it contains and investigate new related properties. In our framework, we consider variations of the spatial domain on which the solution of the PDE is defined at each time, and investigate three main issues: (i) approximate desensitizing, (ii) approximate desensitizing combined with an exact desensitizing for a finite-dimensional subspace, and (iii) exact desensitizing. We provide positive answers to questions (i) and (ii) and partial results to question (iii). pour","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

. — This article is dedicated to desensitizing issues for a quadratic functional involving the solution of the linear heat equation with respect to domain variations. This work can be seen as a continuation of [28], insofar as we generalize several of the results it contains and investigate new related properties. In our framework, we consider variations of the spatial domain on which the solution of the PDE is defined at each time, and investigate three main issues: (i) approximate desensitizing, (ii) approximate desensitizing combined with an exact desensitizing for a finite-dimensional subspace, and (iii) exact desensitizing. We provide positive answers to questions (i) and (ii) and partial results to question (iii). pour
与域变化有关的热方程脱敏控制
.- 本文致力于研究涉及线性热方程求解的二次函数在域变化方面的脱敏问题。这项工作可以看作是 [28] 的延续,因为我们概括了其中的一些结果,并研究了新的相关性质。在我们的框架中,我们考虑了每次确定 PDE 解的空间域的变化,并研究了三个主要问题:(i) 近似脱敏,(ii) 近似脱敏与有限维子空间的精确脱敏相结合,以及 (iii) 精确脱敏。我们对问题(i)和(ii)给出了肯定的答案,对问题(iii)给出了部分结果。 pour
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信