High precision indoor positioning by means of LiDAR

Eduardo Sánchez Morales, M. Botsch, Bertold Huber, A. G. Higuera
{"title":"High precision indoor positioning by means of LiDAR","authors":"Eduardo Sánchez Morales, M. Botsch, Bertold Huber, A. G. Higuera","doi":"10.1109/iss46986.2019.8943731","DOIUrl":null,"url":null,"abstract":"The trend towards autonomous driving and the continuous research in the automotive area, like Advanced Driver Assistance Systems (ADAS), requires an accurate localization under all circumstances. An accurate estimation of the vehicle state is a basic requirement for any trajectory-planning algorithm. Still, even when the introduction of the GPS L5 band promises lane-accuracy, coverage limitations in roofed areas still have to be addressed.In this work, a method for high precision indoor positioning using a LiDAR is presented. The method is based on the combination of motion models with LiDAR measurements, and uses infrastructural elements as positioning references. This allows to estimate the orientation, velocity over ground and position of a vehicle in a Local Tangent Plane (LTP) reference frame. When the outputs of the proposed method are compared to those of an Automotive Dynamic Motion Analyzer (ADMA), mean errors of 1°, 0.1 m/s and of 4.7 cm respectively are obtained. The method can be implemented by using a LiDAR sensor as a stand-alone unit. A median runtime of 40.77 μs on an Intel i7-6820HQ CPU signals the possibility of real-time processing.","PeriodicalId":233184,"journal":{"name":"2019 DGON Inertial Sensors and Systems (ISS)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 DGON Inertial Sensors and Systems (ISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iss46986.2019.8943731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The trend towards autonomous driving and the continuous research in the automotive area, like Advanced Driver Assistance Systems (ADAS), requires an accurate localization under all circumstances. An accurate estimation of the vehicle state is a basic requirement for any trajectory-planning algorithm. Still, even when the introduction of the GPS L5 band promises lane-accuracy, coverage limitations in roofed areas still have to be addressed.In this work, a method for high precision indoor positioning using a LiDAR is presented. The method is based on the combination of motion models with LiDAR measurements, and uses infrastructural elements as positioning references. This allows to estimate the orientation, velocity over ground and position of a vehicle in a Local Tangent Plane (LTP) reference frame. When the outputs of the proposed method are compared to those of an Automotive Dynamic Motion Analyzer (ADMA), mean errors of 1°, 0.1 m/s and of 4.7 cm respectively are obtained. The method can be implemented by using a LiDAR sensor as a stand-alone unit. A median runtime of 40.77 μs on an Intel i7-6820HQ CPU signals the possibility of real-time processing.
利用激光雷达进行高精度室内定位
自动驾驶的趋势和汽车领域的不断研究,如高级驾驶辅助系统(ADAS),要求在任何情况下都能准确定位。对车辆状态的准确估计是任何轨迹规划算法的基本要求。然而,即使GPS L5波段的引入保证了车道精度,在屋顶区域的覆盖限制仍然需要解决。在这项工作中,提出了一种利用激光雷达进行高精度室内定位的方法。该方法基于运动模型与激光雷达测量相结合,并使用基础设施元素作为定位参考。这允许在局部切线平面(LTP)参考系中估计方向,在地面上的速度和车辆的位置。将该方法的输出与汽车动态运动分析仪(ADMA)的输出进行比较,得到的平均误差分别为1°、0.1 m/s和4.7 cm。该方法可以通过使用激光雷达传感器作为一个独立的单元来实现。在Intel i7-6820HQ CPU上,平均运行时间为40.77 μs,表明可以进行实时处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信