Reinforcement Learning for Vision-Based Lateral Control of a Self-Driving Car

Mengzhe Huang, Mingyu Zhao, P. Parikh, Yebin Wang, K. Ozbay, Zhong-Ping Jiang
{"title":"Reinforcement Learning for Vision-Based Lateral Control of a Self-Driving Car","authors":"Mengzhe Huang, Mingyu Zhao, P. Parikh, Yebin Wang, K. Ozbay, Zhong-Ping Jiang","doi":"10.1109/ICCA.2019.8900002","DOIUrl":null,"url":null,"abstract":"Lateral control design is one of the fundamental components for self-driving cars. In this paper, we propose a learning-based control strategy that enables a mobile car equipped with a camera to perfectly perform lane keeping in a road on the ground. Using the method of adaptive dynamic programming, the proposed control algorithm exploits the structural knowledge of the car kinematics as well as the collected data (images) about the lane information. An adaptive optimal lateral controller is obtained through a data-driven learning algorithm. The effectiveness of the proposed method is demonstrated by theoretical stability proofs and experimental evaluations.","PeriodicalId":130891,"journal":{"name":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2019.8900002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Lateral control design is one of the fundamental components for self-driving cars. In this paper, we propose a learning-based control strategy that enables a mobile car equipped with a camera to perfectly perform lane keeping in a road on the ground. Using the method of adaptive dynamic programming, the proposed control algorithm exploits the structural knowledge of the car kinematics as well as the collected data (images) about the lane information. An adaptive optimal lateral controller is obtained through a data-driven learning algorithm. The effectiveness of the proposed method is demonstrated by theoretical stability proofs and experimental evaluations.
基于视觉的自动驾驶汽车横向控制的强化学习
横向控制设计是自动驾驶汽车的基本组成部分之一。在本文中,我们提出了一种基于学习的控制策略,使配备摄像头的移动汽车能够在地面道路上完美地执行车道保持。该控制算法采用自适应动态规划方法,利用车辆运动学的结构知识和收集到的车道信息数据(图像)。通过数据驱动学习算法得到自适应最优横向控制器。理论稳定性证明和实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信