Combinatorial Properties as Predictors for the Performance of the Sum-Product Algorithm

S. Lampoudi, J. Brevik, M. O'Sullivan
{"title":"Combinatorial Properties as Predictors for the Performance of the Sum-Product Algorithm","authors":"S. Lampoudi, J. Brevik, M. O'Sullivan","doi":"10.1109/CWIT.2011.5872141","DOIUrl":null,"url":null,"abstract":"We examine various algebraic/combinatorial properties of Low-Density Parity-Check codes as predictors for the performance of the sum-product algorithm on the AWGN channel in the error floor region. We consider three families of check matrices, two algebraically constructed and one sampled from an ensemble, expurgated to remove short cycles. The three families have similar properties, all are (3; 6)-regular, have girth 8, and have code length roughly 280. The best predictors are small trapping sets, and the predictive value is much higher for the algebraically constructed families than the random ones.","PeriodicalId":250626,"journal":{"name":"2011 12th Canadian Workshop on Information Theory","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 12th Canadian Workshop on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CWIT.2011.5872141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We examine various algebraic/combinatorial properties of Low-Density Parity-Check codes as predictors for the performance of the sum-product algorithm on the AWGN channel in the error floor region. We consider three families of check matrices, two algebraically constructed and one sampled from an ensemble, expurgated to remove short cycles. The three families have similar properties, all are (3; 6)-regular, have girth 8, and have code length roughly 280. The best predictors are small trapping sets, and the predictive value is much higher for the algebraically constructed families than the random ones.
组合属性作为和积算法性能的预测因子
我们研究了低密度奇偶校验码的各种代数/组合特性,作为误差层区域AWGN信道上和积算法性能的预测因子。我们考虑三族的检查矩阵,两个代数构造和一个抽样从一个集合,删去以消除短周期。这三个家族有相似的属性,都是(3;6)-规则,周长为8,代码长度约为280。较小的捕获集是最好的预测器,并且代数构造族的预测值比随机构造族的预测值高得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信